
Lenovo

Cluster Management Using ThinkSystem Storage Manager for DM Series

Version 9.4

Contents

Contents i	Provisioning a basic template	59
	Adding applications to Storage Manager	59
Chapter 1. Understanding Storage	Application provisioning settings	60
Manager 1	Configuration update	64
Chapter 2. Icons used in the	Configuring the administration details of an SVM	65
application interface 3	Configuration Updates window	
Chantar 2 Starage Manager window	Service Processors	67
Chapter 3. Storage Manager window layouts	Assigning IP addresses to Service Processors	67
Chapter 4. Storage Manager	Editing Service Processor settings	67
enhancements	Understanding the Service Processor	68
	Service Processors window	68
Chapter 5. Setting up your cluster	Cluster peers	69
environment	Modifying the cluster peer passphrase	69
Setting up the cluster by using ThinkSystem	Modifying the peer network parameters	69
Storage Manager for DM Series 9	Deleting cluster peer relationships	70
Setting up a cluster by using the template	Peers window	70
file	High availability	71
Setting up the cluster manually	High Availability window	71
Configuring Storage Manager options	Licenses	72
Viewing log files of ThinkSystem Storage Manager for DM Series	Deleting licenses	
How system logging works	License types and entitlement risk	
Configuring a cluster by using Storage Manager 19	Licenses window	74
Setting up the cluster	Cluster Expansion	
Setting up the network	Adding nodes to a cluster	76
Setting up physical storage 26	Configuring the network details of the	77
Setting up logical storage	nodes	
	Obtaining ONTAP software images	
Chapter 6. Setting up SAML	Updating a cluster nondisruptively	
authentication 49	How to update a cluster nondisruptively	
Enabling SAML authentication 49	Cluster Update window	
Disabling SAML authentication 50	Date and time settings of a cluster	
Chapter 7. Setting up peering 51	Date and Time window	
Prerequisites for cluster peering	SNMP	83
Creating intercluster LIFs	Enabling or disabling SNMP	83
Creating cluster peer relationships	Setting SNMP information	83
Creating SVM peers 53	Enabling or disabling SNMP traps	84
What passphrases are 54	Testing the trap host configuration	
	SNMP window	
Chapter 8. Managing clusters 55	LDAP	85
Understanding quorum and epsilon 55	Viewing the LDAP client configuration	85
Dashboard window	Using LDAP services	
Monitoring a cluster using the dashboard 58	LDAP window	86
Applications	Users	86

© Copyright Lenovo 2018, 2023 i

Adding a cluster user account 86	Changing the RAID group when adding capacity
Editing a cluster user account 87	disks
Changing passwords for cluster user	Moving FlexVol volumes
accounts 87	Mirroring aggregates
Locking or unlocking cluster user accounts 87	Viewing aggregate information
User accounts (cluster administrators only) 87	Installing a CA certificate if you use StorageGRID Webscale
Roles	How moving a FlexVol volume works 114
Users window	How you can use effective ONTAP disk type
Roles	for mixing HDDs
Adding roles	What compatible spare disks are 115
Editing roles	How Storage Manager works with hot
Roles and permissions	spares
Roles window 90	Rules for displaying disk types and disk RPM
Chapter 9. Managing the network 91	How mirrored aggregates work
IPspaces	What a FabricPool is
Editing IPspaces 91	Storage recommendations for creating
Deleting IPspaces 91	aggregates
Broadcast domains	Storage Tiers window
Editing broadcast domain settings 91	Configuring and managing external capacity
Deleting broadcast domains 92	tiers
Subnets	Adding an external capacity tier 122
Editing subnet settings 92	Attaching an aggregate to an external capacity tier
Deleting subnets	Provisioning storage by creating a FabricPool-
Network interfaces	enabled aggregate manually
Creating network interfaces 93	Changing the tiering policy of a volume 124
Editing network interface settings 95	Editing an external capacity tier
Deleting network interfaces 96	Deleting an external capacity tier
Migrating a LIF	What external capacity tiers and tiering
Ethernet ports	policies are
Creating interface groups 97	What inactive (cold) data is 125
Creating VLAN interfaces 97	External Capacity Tier window 125
Editing Ethernet port settings 97	Aggregates
Editing interface group settings 98	Aggregates window
Modifying the MTU size of a VLAN 98	Storage pools
Deleting VLANs 98	Creating a storage pool
Ports and adapters 98	Adding disks to a storage pool 129
FC/FCoE and NVMe adapters 98	Deleting storage pools
Editing the FC/FCoE and NVMe adapter	How to use SSD storage pools 130
speed settings	Requirements and best practices for using SSD storage pools
Chapter 10. Managing physical	Considerations for when to use SSD storage pools
storage	Considerations for adding SSDs to an existing
Storage tiers	storage pool versus creating a new one 132
Editing aggregates	Why you add disks to storage pools 133
Deleting aggregates	How storage pool works
Changing the RAID configuration when	Storage Pools window
creating an aggregate	Disks
Provisioning cache by adding SSDs 108	Reassigning disks to nodes
Adding capacity disks	Viewing disk information
	-

How ONTAP reports disk types	. 135	Storage Virtual Machines	. 155
Minimum number of hot spares required for		SVM Dashboard window	. 155
disks	. 136	Monitoring SVMs	. 156
Spare requirements for multi-disk carrier	400	Editing SVM settings	. 156
disks		Deleting SVMs	. 157
Shelf configuration requirements for multi-disk carrier storage shelves		Starting SVMs	. 158
How to determine when it is safe to remove a	. 101	Stopping SVMs	. 158
multi-disk carrier	. 137	Managing SVMs	. 159
Considerations for sizing RAID groups	. 137	Types of SVMs	. 159
Disks window	. 138	Why you use SVMs	. 160
Array LUNs	. 140	How ONTAP name service switch	
Assigning array LUNs		configuration works	
Reassigning spare array LUNs to nodes		Storage Virtual Machines window	
Zeroing spare array LUNs		Volumes	
About disks and array LUNs		Editing volume properties	. 163
Array LUNs window		Editing data protection volumes	
Nodes		Deleting volumes	. 166
Initializing the ComplianceClock time		Creating FlexClone volumes	. 166
Nodes window		Creating FlexClone files	. 167
Flash Cache		Splitting a FlexClone volume from its parent	
Enabling or disabling Flash Cache		volume	
How Flash Cache works		Viewing the FlexClone volume hierarchy	
Flash Cache window		Changing the status of a volume	
Events		Viewing the list of saved Snapshot copies	. 168
Events window		Creating Snapshot copies outside a defined	100
System alerts		schedule	
Acknowledging system health alerts		Setting the Snapshot copy reserve	
Suppressing system health alerts		Hiding the Snapshot copy directory	. 170
Deleting system health alerts		Scheduling automatic creation of Snapshot copies	. 170
Available cluster health monitors		Restoring a volume from a Snapshot copy	
Ways to respond to system health alerts		Extending the expiry date of Snapshot	
System Alerts window		copies	. 171
AutoSupport notifications		Renaming Snapshot copies	. 171
Setting up AutoSupport notifications		Deleting Snapshot copies	. 172
Enabling or disabling AutoSupport	. 110	Resizing volumes	
settings	. 149	Enabling storage efficiency on a volume	. 173
Adding AutoSupport email recipients	. 149	Changing the deduplication schedule	. 174
Testing AutoSupport settings	. 149	Running deduplication operations	. 174
Generating AutoSupport data	. 150	Moving FlexVol volumes between aggregates	
Viewing AutoSupport summary	. 150	or nodes	. 175
AutoSupport severity types		Assigning volumes to Storage QoS	. 176
AutoSupport window		Creating a mirror relationship from a source	
Jobs		SVM	. 178
Jobs		Creating a vault relationship from a source	170
Job window		SVM	. 1/8
Flash Pool statistics		Creating a mirror and vault relationship from a source SVM	. 180
Flash Pool aggregate Statistics window		Creating an NFS datastore for VMware	
		Changing the tiering policy of a volume	
Chapter 11. Managing logical		Creating FlexGroup volumes	
storage	.155	Editing FlexGroup volumes	

© Copyright Lenovo 2018, 2023 iii

Resizing FlexGroup volumes	Editing initiator groups	. 218
Changing the status of a FlexGroup	Editing initiators	. 218
volume	Editing port sets	. 219
Deleting FlexGroup volumes	Viewing LUN information	. 219
Viewing FlexGroup volume information 185	Viewing initiator groups	. 219
What Lenovo Volume Encryption is 185	Guidelines for working with FlexVol volumes	
Snapshot configuration	that contain LUNs	. 219
How volume guarantees work for FlexVol volumes	Understanding space reservations for LUNs	. 220
What SnapDiff is	Guidelines for using LUN multiprotocol	
FlexClone volumes and space guarantees 186	type	
Thin provisioning for greater efficiencies using	Understanding LUN clones	
FlexVol volumes	Initiator hosts	
Using space reservations with FlexVol volumes	igroup name	
Benefits of storage efficiency	igroup type	
	igroup ostype	
Data compression and deduplication 188 Guidelines for using deduplication 189	LUNs window	
	Qtrees	
Options for resizing volumes	Creating qtrees	
Considerations when moving volumes 190	Deleting qtrees	
Volumes window	Editing qtrees	
Junction Path	Assigning export policies to qtrees	
Mounting volumes	Viewing qtree information	
Unmounting FlexVol volumes	Qtree options	
Changing export policies	Qtrees window	. 228
Junction Path window	Quotas	. 228
Shares	Creating quotas	. 229
Creating a CIFS share 200	Deleting quotas	. 229
Stopping share access 201	Editing quota limits	. 229
Creating home directory shares 201	Activating or deactivating quotas	. 230
Editing share settings 201	Resizing quotas	. 230
How ONTAP enables dynamic home	Viewing quota information	. 230
directories	Types of quotas	. 231
Shares window	Quota limits	. 231
LUNs	Quota management	. 231
Creating FC SAN optimized LUNs 206	Quotas window	. 232
Application-specific LUN settings 207	CIFS protocol	
Creating LUNs	Setting up CIFS	
Deleting LUNs	Editing the general properties for CIFS	. 234
Creating initiator groups	Adding home directory paths	
Deleting initiator groups	Deleting home directory paths	. 235
Adding initiators 213	Resetting CIFS domain controllers	
Deleting initiators from an initiator group 213	Updating the CIFS group policy	
Creating port sets	configuration	. 235
Deleting port sets	Enabling or disabling a CIFS group policy	
Cloning LUNs 214	configuration	
Editing LUNs	Reloading CIFS group policy	
Bringing LUNs online 215	Setting up BranchCache	
Taking LUNs offline 215	Modifying the BranchCache settings	. 237
Moving LUNs	Deleting the BranchCache configuration	. 237
Assigning LUNs to storage QoS 216	Adding preferred domain controllers	. 237

Editing preferred domain controllers	238	Deleting efficiency policies	. 257
Deleting preferred domain controllers	238	Enabling or disabling efficiency policies	. 258
Viewing CIFS domain information	238	What an efficiency policy is	. 258
CIFS window	238	Understanding predefined efficiency	
NFS protocol	240	policies	
Editing NFS settings	240	Efficiency Policies window	. 258
NFS window		Protection policies	. 260
NVMe protocol		Creating protection policies	. 260
Setting up NVMe		Deleting protection policies	. 261
Creating an NVMe namespace		Editing protection policies	. 261
Editing an NVMe namespace		Protection Policies window	. 261
Cloning an NVMe namespace		QoS policy groups	. 262
Starting and stopping the NVMe service .		Creating QoS policy groups	. 262
What NVMe is		Deleting QoS policy groups	. 263
NVMe namespaces		Editing QoS policy groups	. 263
NVMe subsystems		Managing workload performance by using	
NVMe namespaces window		Storage QoS	
iSCSI protocol		How Storage QoS works	. 264
Creating iSCSI aliases		How the maximum throughput limit works .	. 265
Enabling or disabling the iSCSI service on	241	Rules for assigning storage objects to policy	
storage system interfaces	247	groups	
Adding the security method for iSCSI		QoS Policy Groups window	
initiators	248	NIS services	
Editing default security settings	248	Adding NIS domains	
Editing initiator security	248	Editing NIS domains	
Changing the default iSCSI initiator		NIS window	. 268
authentication method	249	LDAP client services	. 268
Setting the default security for iSCSI		Adding an LDAP client configuration	. 268
initiators		Deleting an LDAP client configuration	. 268
Starting or stopping the iSCSI service		Editing an LDAP client configuration	. 269
Viewing initiator security information		LDAP Client window	. 269
iSCSI window		LDAP configuration services	. 270
FC/FCoE protocol	250	Editing active LDAP clients	. 270
Starting or stopping the FC or FCoE		Deleting active LDAP clients	. 270
service		LDAP Configuration window	. 271
Changing an FC or FCoE node name		Kerberos realm services	. 271
The FCoE protocol		Creating a Kerberos realm configuration	. 271
FC/FCoE window		Editing a Kerberos realm configuration	
Export policies		Deleting Kerberos realm configurations	
Creating an export policy		Using Kerberos with NFS for strong	
Renaming export policies		security	. 273
Deleting export policies	252	Kerberos authentication for CIFS	. 273
Adding rules to an export policy	252	Kerberos Realm window	. 273
Modifying export policy rules	253	Kerberos interface services	. 273
Deleting export policy rules	253	Editing Kerberos configuration	
How export policies control client access to		Kerberos Interface window	
volumes or qtrees		DNS/DDNS Services	
Export Policies window		Enabling or disabling DDNS	
Efficiency policies		Editing DNS and DDNS settings	
Adding efficiency policies		DNS/DDNS Services window	
Editing efficiency policies	257	Users	
			1

Adding SVM user accounts	Vault relationships
Changing the password for SVM user	Creating a vault relationship from a
accounts	destination SVM
Editing SVM user accounts	Deleting vault relationships 303
Locking or unlocking SVM user accounts 277	Editing vault relationships 304
Users window	Initializing a vault relationship 306
Roles	Updating a vault relationship 306
Adding roles 278	Quiescing a vault relationship 306
Editing roles 278	Resuming a vault relationship 307
Roles window 278	Aborting a Snapshot copy transfer 307
UNIX	Restoring a volume in a vault relationship 307
UNIX window 279	What a SnapVault backup is 308
Windows	Mirror and vault relationships 310
Creating a local Windows group 280	Creating a mirror and vault relationship from a
Editing local Windows group properties 281	destination SVM
Adding user accounts to a Windows local	Deleting mirror and vault relationships 311
group	Editing mirror and vault relationships 312
Renaming a local Windows group 283	Initializing mirror and vault relationships 313
Deleting a local Windows group 283	Updating mirror and vault relationships 313
Creating a local Windows user account 284	Quiescing mirror and vault relationships 314
Editing the local Windows user properties 285	Resuming mirror and vault relationships 314
Assigning group memberships to a user	Breaking mirror and vault relationships 315
account	Resynchronizing mirror and vault
Renaming a local Windows user 285	relationships
Resetting the password of a Windows local user	Reverse resynchronizing mirror and vault relationships
Deleting a local Windows user account 286	Aborting mirror and vault relationships 316
Windows window 287	Restoring a volume in a mirror and vault
Name mapping	relationship
Name mapping conversion rules 289	What lag time is
How group mapping supports multiprotocol	Types of data protection relationships 318
access to Infinite Volumes 289	SnapMirror licensing
Name Mapping window 290	Protection window
	Protection policies
Chapter 12. Managing data	Creating protection policies 321
protection	Protection Policies window 321
Mirror relationships	Snapshot policies
Creating a mirror relationship from a	Creating Snapshot policies 322
destination SVM	Editing Snapshot policies 322
Deleting mirror relationships	Deleting Snapshot policies
Editing mirror relationships	About Snapshot policies
Initializing mirror relationships	Snapshot Policies window
Updating mirror relationships 296	Schedules
Quiescing mirror relationships	Creating schedules
Resuming mirror relationships	Editing schedules
Breaking SnapMirror relationships 298	Deleting schedules
Resynchronizing mirror relationships 298	Schedules
Reverse resynchronizing mirror relationships	Schedules window
Aborting a mirror transfer	
Restoring a volume in a mirror relationship 300	Appendix A. Contacting Support327
How SnapMirror relationships work	
How onapivimo relationally work 301	

Appendix B. Notices	329	Trademarks								. 3	30

Chapter 1. Understanding Storage Manager

Storage Manager is a graphical management interface that enables you to manage storage systems and storage objects (such as disks, volumes, and aggregates) and perform common management tasks related to storage systems from a web browser. As a cluster administrator, you can use Storage Manager to administer the entire cluster and its resources.

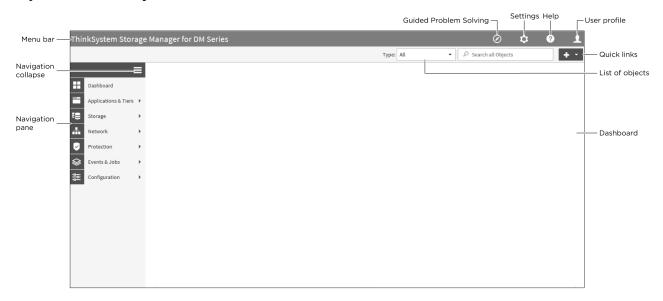
Storage Manager enables you to perform many common tasks such as the following:

- Create a cluster, configure a network, and set up support details for the cluster.
- Configure and manage storage objects such as disks, aggregates, volumes, qtrees, and quotas.
- Configure protocols such as CIFS and NFS, and provision file sharing.
- Configure protocols such as FC, FCoE, NVMe, and iSCSI for block access.
- Create and configure network components such as subnets, broadcast domains, data and management interfaces, and interface groups.
- Set up and manage mirroring and vaulting relationships.
- Perform cluster management, storage node management, and storage virtual machine (SVM) management operations.
- Create and configure SVMs, manage storage objects associated with SVMs, and manage SVM services.
- Monitor and manage HA configurations in a cluster.
- Configure Service Processors to remotely log in, manage, monitor, and administer the node, regardless of the state of the node.

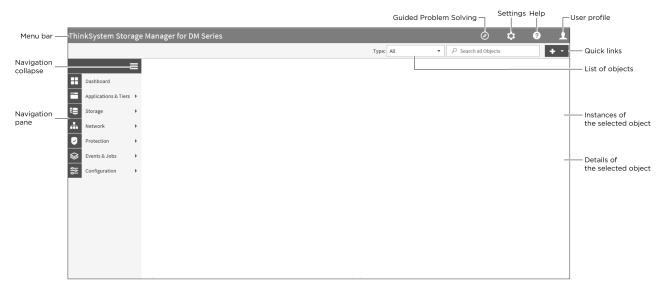
Chapter 2. Icons used in the application interface

You can view the icons in the interface to get quick information about systems and operations.

Dashboard window icons


You might see the following icons when viewing the dashboard for the storage system:

Icon	Name	Description
A	Warning	There are minor issues, but none that require immediate attention.
\oint 	Error	Problems that might eventually result in downtime and therefore require attention.
②	Critical	The storage system is not serving data or cannot be contacted. Immediate attention is required.
→	Link arrow	If this is displayed next to a line item in a dashboard pane, clicking it links to another page from which you can get more information about the line item or make changes to the line item.


Chapter 3. Storage Manager window layouts

Understanding the typical window layouts helps you to navigate and use Storage Manager effectively. Most Storage Manager windows are similar to one of two general layouts: object list or details.

Object list window layout

Details window layout

Chapter 4. Storage Manager enhancements

You should become familiar with the features that have been added or changed in this release of Storage Manager.

Features and enhancements added in ONTAP 9.4

NVMe protocol

The NVM Express (NVMe) protocol is now supported by ONTAP and can be configured in Storage Manager. NVMe is an alternative protocol for block access, similar to the existing iSCSi or FC protocols.

• Aggregate recommender

You can create an aggregate based on storage recommendations. Storage Manager analyzes the configuration of your storage system and provides storage recommendations such as the number of aggregates that will be created, the available nodes, and the available spare disks.

• FabricPool-enabled aggregates enhancements

FabricPool-enabled aggregates have been enhanced to support the following features and functionalities:

- New UI navigation for the external capacity tier menu
- New " Auto " caching policy
- Support for inactive (cold) data
- Support for object store certificate for StorageGRID external capacity tier
- Support for Microsoft Azure Blob storage external capacity tier
- More information in the capacity tab of the cluster dashboard
- Support ONTAP Select
- Support for viewing external capacity tier, other than StorageGRID, Amazon AWS S3, and Microsoft Azure Blob storage, created using the command-line interface (CLI).
- FlexGroup volumes enhancements

FlexGroup volumes include the following enhancements and new features:

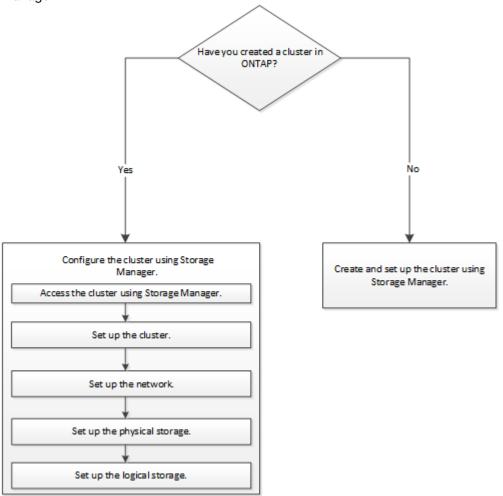
- Support for advanced options such as volume encryption, storage efficiency, and QoS.
- Protect volumes
- More information in the protection tab of the cluster dashboard
- Support for configuring Snapshot copies

You can configure Snapshot copies by setting a schedule to an existing Snapshot policy. Beginning with ONTAP 9.4, you can have fewer than 1024 Snapshot copies of a FlexVol volume.

• Storage efficiency enhancements

The percentage of logical space used and the status of logical space reporting is now displayed in the Storage Manager Volumes window.

• Removed partial support for infinite volumes


You cannot create infinite volumes and protect infinite volumes by using Storage Manager.

Support for SMB Multichannel

You can enable SMB protocol to establish multiple channels between a SMB3.0 session and transport connections, specifically for higher performance and fault tolerance and resiliency.

Chapter 5. Setting up your cluster environment

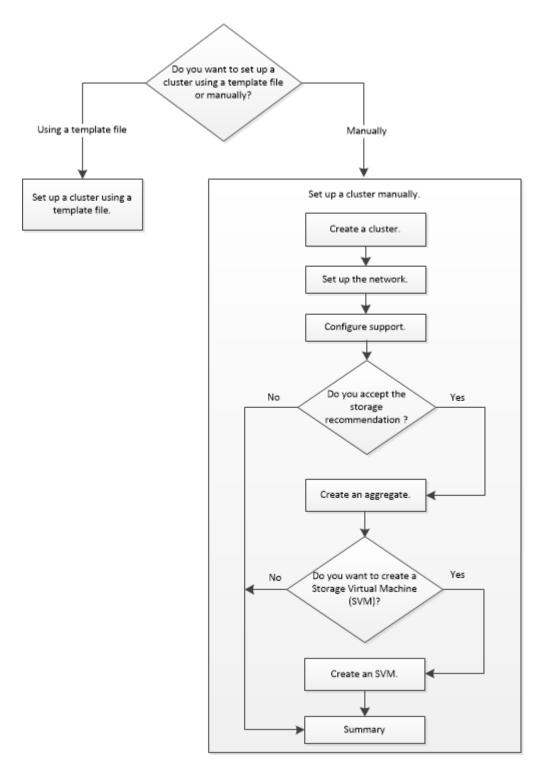
You can create a cluster by using Storage Manager or the command-line interface (CLI). To create a cluster by using Storage Manager, you must set up the node management IP address on any node in the cluster network. If you have created a cluster by using the CLI, you can configure the cluster by using Storage Manager.

Setting up the cluster by using ThinkSystem Storage Manager for DM Series

You can use ThinkSystem™ Storage Manager for DM Series to set up a cluster by creating a cluster, setting up the node management network and cluster management network, and then setting up AutoSupport messages and event notifications.

Before you begin

- You must have configured the node management IP addresses for at least one node.
- Nodes must be in the default mode of HA.
- Nodes must be running ONTAP 9.4 or later.
- Nodes must be of the same version.


- All of the nodes must be healthy, and cabling for the nodes must be set up.
- Cabling and connectivity must be in place for your cluster configuration.
- You must have sufficient cluster management, node management, Service Processor IP addresses, and gateway and netmask details.
- If the cluster interface is present on a port, then that port must be present in the cluster IPspace.

About this task

To create a cluster, you have to log in through the console, and configure the node management IP address on any node in the cluster network. After you have configured the node management IP address on a node, you can add other nodes and create a cluster by using ThinkSystem Storage Manager for DM Series.

The cluster setup operation is not supported on MetroCluster configurations for ONTAP software.

You can set up the cluster by using a template file or by manually entering the values in the cluster setup wizard.

Setting up a cluster by using the template file

You can use the template file that is provided in Storage Manager to set up a cluster by creating a cluster, setting up the node management and cluster management networks, and then setting up the AutoSupport messages and event notifications. You can download the template file in .xlsx format or .csv format.

About this task

- If the cluster supports ONTAP 9.4 or later, you can add only storage systems that are running ONTAP 9.4 or later.
- All fields are not auto populated when you upload the file.

You must manually enter the value of some fields such as password and cluster management port.

- Open the web browser, and then enter the node management IP address that you have Step 1. configured: https://node-management-IP
 - If you have set up the credentials for the cluster, the Login page is displayed.

You must enter the credentials to log in.

- If you have not set up the credentials for the cluster, the Guided Setup window is displayed.
- Step 2. Download the .xlsx template file or the .csv template file.
- Step 3. Provide all the required values in the template file, and save the file.

Notes:

- Do not edit any other column in the template other than Value.
- Do not change the version of the template file.
- Step 4. Click **Browse**, and select the updated template file.
 - You can upload the template file only in the .csv format. If you have downloaded the template file in .xlsx format, you must save the file as a .csv file, and then upload the file.
 - You must ensure that the encoding used for this file is UTF8. If not, the values will not be read.
- Step 5. Click Upload.

The details that you have provided in the template file are used to complete the cluster setup process.

- Step 6. Click the **Guided Setup** icon to view the details for the cluster.
- Step 7. Verify the details in the Cluster window, and then click **Submit and Continue**. You can edit the cluster details, if required.

If you log in to the Cluster window for the second time, the Feature Licenses field is enabled by

default. You can add new feature license keys or retain the pre-populated license keys.

- Step 8. Verify the details in the Network window, and then click Submit and Continue. You can edit the network details, if required.
- Step 9. Verify the details in the Support window, and then click **Submit and Continue**. You can edit the support details, if required.
- Step 10. Verify the details in the Storage window, and then create aggregates or exit the cluster setup:

If you want to	Then
Exit cluster setup without provisioning storage and creating an SVM	Click Skip this step .
Provision storage using aggregates and create an SVM	Click Submit and Continue .

You can edit the support details, if required.

- Step 11. If you have clicked Skip this step on the Storage window, view the details on the Summary window, and then click Manage your Cluster to launch Storage Manager.
- Step 12. If you have clicked Submit and Continue on the Storage window, verify the details in the SVM window, and then click Submit and Continue. You can edit the SVM details, if required.

Step 13. Verify all the details in the Summary window, and then click **Provision an Application** to provision storage for applications, or click **Manage your Cluster** to complete the cluster setup process and launch Storage Manager, or click **Export Configuration** to download the configuration file.

Setting up the cluster manually

You can use Storage Manager to manually setup the cluster by creating a cluster, setting up the node management and cluster management networks, and setting up the AutoSupport messages and event notifications.

Creating a cluster

You can use ThinkSystem Storage Manager for DM Series to create and set up a cluster in your data center.

About this task

If the cluster supports ONTAP 9.4 or later, you can add only those storage systems that are running ONTAP 9.4 or later.

- Step 1. Open the web browser, and then enter the node management IP address that you have configured: https://node-management-IP
 - If you have set up the credentials for the cluster, the Login page is displayed.

You must enter the credentials to log in.

- If you have not set up the credentials for the cluster, the Guided Setup window is displayed.
 - Click the **Guided Setup** icon to set up a cluster.
- Step 2. In the Cluster page, enter a name for the cluster.

Note: If all the nodes are not discovered, click Refresh.

The nodes in that cluster network are displayed in the Nodes field.

- Step 3. Optional: If desired, update the node names in the Nodes field.
- Step 4. Enter the password for the cluster.
- Step 5. Optional: Enter the feature license keys.
- Step 6. Click Submit.

After you finish

Enter the network details in the Network page to continue with the cluster setup.

Setting up a network

By setting up a network, you can manage your cluster, nodes, and Service Processors. You can also set up DNS and NTP details by using the network window.

Before you begin

You must have set up the cluster.

About this task

Only those nodes that are up and running are listed for cluster creation.

You can create LIFs for those nodes.

You can disable IP address range and enter individual IP addresses for cluster management, node management, and Service Processor management networks.

Setting up a network when an IP address range is enabled

You can set up a network by enabling an IP address range. The IP address range enables you to enter IP addresses that are in the same netmask range or in the different netmask range.

Step 1. Enter a range of IP addresses in the IP Address Range field, and then click **Apply**.

Option	Description							
You have a range of IP addresses in the same netmask	Enter the IP address range, and then click Apply .							
	IP addresses are applied to cluster management, node management, and Service Processor management networks sequentially.							
You have a range of IP addresses in different netmasks	Enter the IP address range in rows, and then click Apply .							
	The first IP address applied to cluster management and other IP addresses are applied to node management and Service Processor management networks sequentially.							

Note: After entering the IP address range for cluster management, node management, and Service Processor management, you must not manually modify the IP address values in these fields. You must ensure that all the IP addresses are IPv4 addresses.

- Step 2. Enter the netmask and gateway details.
- Step 3. Select the port for cluster management in the Port field.
- Step 4. If the Port field in the node management is not populated with e0M, enter the port details.

Note: By default, the Port field displays e0M.

- Step 5. For Service Processor management, if you are overriding the default values, ensure that you have entered the mandatory gateway details.
- If you have enabled the DNS Details field, enter the DNS server details. Step 6.
- If you have enabled the NTP Details field, enter the NTP server details. Step 7.

Note: Providing alternative NTP server details is optional.

Step 8. Click Submit.

After you finish

Enter AutoSupport message details and event notifications in the Support page to continue with the cluster setup.

Setting up a network when an IP address range is disabled

You can set up a network by disabling an IP address range and entering individual IP addresses for cluster management, node management, and service provider networks.

About this task

In the Networks page, if the **IP Address Range** is disabled, enter individual IP addresses for cluster management, node management, and service processor networks.

- Step 1. Enter the cluster management IP address in the Cluster Management IP Address field.
- Step 2. Enter the netmask details for cluster management.
- Step 3. Optional: Enter the gateway details for cluster management.
- Step 4. Select the port for cluster management in the Port field.
- Step 5. If you want to provide netmask and gateway details to manage your nodes, clear the Retain Netmask and Gateway configuration of the Cluster Management check box, and then enter the netmask and gateway details.
- Step 6. Enter the node management IP addresses in the Node Management field.
- Step 7. If the Port field in the node management is not populated with e0M, enter the port details.
 - Note: By default, the Port field displays e0M.
- Step 8. Enter the Service Processor management netmask and gateway details.
- Step 9. Enter the Service Processor IP management addresses in the Service Processor Management field.
- Step 10. If you have enabled the DNS Details field, enter the DNS server details.
- Step 11. If you have enabled the NTP Details field, enter the NTP server details.

Note: Providing alternative NTP server details is optional.

Step 12. Click Submit.

After you finish

Enter AutoSupport message details and event notifications in the Support page to continue with the cluster setup.

Setting up a support page

Setting up the support page completes the cluster setup, and involves setting up the AutoSupport messages and event notifications.

Before you begin

You must have set up the cluster and network.

About this task

If you have enabled the AutoSupport button, all the nodes in that cluster are enabled to send AutoSupport messages. If you have disabled the AutoSupport button, then all the nodes in that cluster are disabled to send AutoSupport messages.

Note: Lenovo recommends only enabling AutoSupport if you first run the node autosupport modify -remove-private-data command.

Step 1. If you have enabled the AutoSupport button, set up the AutoSupport messages by entering the proxy URL in the Proxy URL field.

Note: The format of the proxy URL must be username:password@proxyUrl:port .

Step 2. Set up the event notifications by using the mailhost, or SNMP trap host, or Syslog server.

Note: You must set up at least one event notification system.

Step 3. Click Submit and Continue.

After you finish

View the storage recommendations and create SVMs to continue with the cluster setup.

Reviewing storage recommendations

Using the Storage window, you can review the storage recommendations that are provided for creating aggregates.

Before you begin

You must have set up the cluster, network, and the support details.

About this task

You can create data aggregates per the storage recommendations or you can skip this step and create data aggregates at a later time using Storage Manager.

To create data aggregates as per the storage recommendations, click **Submit and Continue**.

To create data aggregates at a later time using Storage Manager, click **Skip this step**.

After you finish

If you opted to create aggregates per the storage recommendations, you must create a storage virtual machine (SVM) to continue with the cluster setup.

Creating an SVM

You can use the Storage Virtual Machine (SVM) window to create fully configured SVMs. The SVMs serve data after storage objects are created on these SVMs.

Before you begin

- You must have created an aggregate and the aggregate must be online.
- You must have ensured that the aggregate has sufficient space for the SVM root volume.
- Step 1. Enter a name for the SVM.
- Step 2. Select data protocols for the SVM:

If you want to	Then
Enable CIFS protocol by configuring the CIFS server using an Active Directory	Select the Active Directory box. Enter the Active Directory administrator name.
	Enter the Active Directory administrator password.
	4. Enter a name for the CIFS server.
	Enter a name for the Active Directory domain.
	 Depending on your requirements, select the One data LIF on this SVM or One data LIF per node on this SVM box.
	7. Provide data LIF details such as IP address, netmask, gateway, and port.
	8. Provide DNS details.
Enable CIFS protocol by configuring the CIFS server using a workgroup	1. Select the Workgroup box.
	2. Enter a name for the workgroup.
	3. Enter a name for the CIFS server.
	 Depending on your requirements, select the One data LIF on this SVM or One data LIF per node on this SVM check box.
	Provide data LIF details such as IP address, netmask, gateway, and port.
Enable NFS protocol	1. Select the NFS box.
	 Depending on your requirements, select the One data LIF on this SVM or One data LIF per node on this SVM check box.
	Provide data LIF details such as IP address, netmask, gateway, and port.
Enable iSCSI protocol	Select the iSCSI box. Provide data UE datails such as IP.
	Provide data LIF details such as IP address, netmask, gateway, and port.

If you want to	Then
Enable FC/FCoE protocol	 Select the FC/FCoE box. Select the FC/FCoE ports for FC or FCoE protocols. Note: Each node must have at least one correctly configured port for each protocol (FC and FCoE).
Enable NVMe protocol	Select the NVMe box. Select the NVMe ports for NVMe protocols. Note: At least on NVMe capable adapter must be available on each of the nodes configured for NMVe.

- Step 3. Optional: Click the Advanced Options icon and provide details to configure advanced options such as the default language, security style, CIFS server details, and NFS details.
- Click **Submit and Continue** to create the SVM. Step 4.

After you finish

If you have clicked Submit and Continue, you must verify the details that you have provided in the Summary window, and then click Manage your Cluster to launch Storage Manager, or click Provision an Application to provision storage applications, or click Export Configuration to download the configuration file.

Configuring Storage Manager options

You can enable logging and specify the inactivity timeout value for Storage Manager.

About this task

You can configure the options from the Storage Manager login window. However, you must log in to the application to specify the inactivity timeout value.

- Click 🎑 . Step 1.
- Step 2. In the Setup pane, click General.
- Specify a log level. Step 3.
- Step 4. Specify the inactivity timeout value in minutes.

Note: This option is not available if you have enabled Security Assertion Markup Language (SAML) authentication.

Click OK. Step 5.

Viewing log files of ThinkSystem Storage Manager for DM Series

If you encounter any issues when using Storage Manager, you can send the log files to technical support to help troubleshoot the issues. The Storage Manager log files are located in the mlog directory along with the ONTAP log files.

- Step 1. Identify the node that hosts the cluster management LIF.
- Step 2. Enter the following URL in a web browser:

 https://cluster-mgmt-LIF/spi

 cluster-mgmt-LIF is the IP address of the cluster management LIF.
- Step 3. Type your cluster administrator credentials, and then click **OK**.
- Step 4. In the Data ONTAP Root Volume File Access window, click the **logs** link for the node that hosts the cluster management LIF.
- Step 5. Navigate to the mlog directory to access the Storage Manager log files.

 You might require the following log files, depending on the type of issue that you encountered:
 - sysmgr.log This file contains the latest logs for Storage Manager.
 - mgwd.log
 - php.log
 - apache_access.log
 - messages.log

How system logging works

System logging is an essential tool for application troubleshooting. You should enable system logging so that if there is a problem with an application, the problem can be located. You can enable Storage Manager logging at runtime without modifying the application binary.

Log output can be voluminous and therefore can become difficult to manage. Storage Manager enables you to refine the logging output by selecting which type of log statements are output. By default, system logging is set to INFO. You can choose one of the following log levels:

- OFF
- ERROR
- WARN
- INFO
- DEBUG

These levels function hierarchically. A log level set to OFF indicates no logging of messages.

Configuring a cluster by using Storage Manager

Certain prerequisites must be met before you configure a cluster using Storage Manager .

- You must have created a cluster.
- You must have not configured the cluster.

Setting up the cluster

Setting up the cluster involves gathering the configuration information, creating cluster-management and node-management interfaces, adding licenses, setting up the cluster time, and monitoring HA pairs.

Updating the cluster name

You can use Storage Manager to modify the name of a cluster when required.

- Step 1. Click Configuration → Configuration Updates .
- Step 2. In the Cluster Details pane, click **Update Cluster Name**.

Step 3. In the Update Cluster Name dialog box, specify a new name for the cluster, and then click Submit .

Changing the cluster password

You can use Storage Manager to reset the password of a cluster.

- Step 1. Click Configuration → Configuration Updates .
- In the Cluster Details pane, click Change Password. Step 2.
- Step 3. In the Change Password dialog box, specify a new password, confirm the new password, and then click Change.

Editing DNS configurations

You can use Storage Manager to add host information to centrally manage DNS configurations. You can modify the DNS details when you want to change the domain names or IP addresses.

- Click Configuration → Configuration Updates . Step 1.
- In the Cluster Details pane, click Edit DNS Configuration. Step 2.
- Step 3. In the DNS Domains area, add or modify the DNS domain names.
- Step 4. In the Name Servers area, add or modify the IP addresses.
- Step 5. Click OK.

Creating a cluster management interface

You can use Storage Manager to create a cluster management interface or LIF to provide a single management interface for a cluster. You can use this LIF to manage all of the activities of the cluster.

- Click Configuration → Configuration Updates . Step 1.
- Step 2. In the Cluster Details pane, click Create Cluster-management LIF.
- In the Create Cluster-Management LIF dialog box, specify a name for the cluster management LIF. Step 3.
- Step 4. Assign an IP address to the cluster management LIF:

If you want to	Then
Specify the IP address by using a subnet	1. Select Using a subnet .
	In the Add Details dialog box, select the subnet from which the IP address should be assigned.
	For an intercluster LIF, only the subnets that are associated with the selected IPspace are displayed.
	If you want to assign a specific IP address to the LIF, select Use a specific IP address, and then type the IP address.
	The IP address that you specify is added to the subnet if the IP address is not already present in the subnet range.
	4. Click OK .
Specify the IP address manually without using a subnet	1. Select Without a subnet .
	In the Add Details dialog box, perform the following steps:
	 a. Specify the IP address and the network mask or prefix.
	b. Optional: Specify the gateway.
	 c. If you do not want to use the default value for the Destination field, specify a new destination value.
	If you do not specify a value, the Destination field is populated with the default value based on the family of the IP address.
	If a route does not exist, a new route is automatically created based on the gateway and destination. 3. Click OK .
	o. Giloit OIL.

- Step 5. Select the required ports from the Port details area.
- Step 6. Click Create.

Editing the node name

You can use Storage Manager to modify the name of a node when required.

- Step 1. Click Configuration → Configuration Updates .
- Step 2. In the Nodes tab, select the node that you want to rename, and then click **Edit Node Name**.
- Step 3. In the Edit Node Name dialog box, type the new name for the node, and then click **Submit**.

Creating a node management LIF

You can use Storage Manager to create a dedicated IP address for managing a particular node in a cluster. You can use this LIF to manage the system maintenance activities of the node.

- Step 1. Click Configuration → Configuration Updates .
- Step 2. In the Nodes tab, select the node for which you want to create a node management LIF, and then click Create Node-management LIF.
- Step 3. In the Create Node-Management LIF dialog box, specify a name for the node management LIF.
- Step 4. Assign the IP address to the node management LIF:

If you want to	Then
Specify the IP address by using a subnet	Select Using a subnet .
	In the Add Details dialog box, select the subnet from which the IP address should be assigned.
	For an intercluster LIF, only the subnets that are associated with the selected IPspace are displayed.
	If you want to assign a specific IP address to the LIF, select Use a specific IP address, and then type the IP address.
	The IP address that you specify is added to the subnet if the IP address is not already present in the subnet range.
	4. Click OK .
Specify the IP address manually without using a subnet	Select Without a subnet .
	In the Add Details dialog box, perform the following steps:
	 a. Specify the IP address and the network mask or prefix.
	b. Optional: Specify the gateway.
	 c. If you do not want to use the default value for the Destination field, specify a new destination value.
	If you do not specify a value, the Destination field is populated with the default value based on the family of the IP address.
	If a route does not exist, a new route is automatically created based on the gateway and destination.
	3. Click OK .

- Step 5. Select the required ports from the Ports details area.
- Step 6. Click Create.

After you finish

If you want to delete an existing node management interface or LIF, you must use the command-line interface (CLI).

Editing AutoSupport settings

You can use Storage Manager to modify your AutoSupport settings to specify an email address from which email notifications are sent and to add multiple email host names.

- Step 1. Click → AutoSupport .
- Step 2. Select the node for which you want to modify AutoSupport settings, and then click Edit .
- Step 3. In the Email Recipient tab, type the email address from which email notifications are sent, specify the email recipients and the message content for each email recipient, and then add the mail hosts. You can add up to five email addresses for each host.
- Step 4. In the Others tab, select a transport protocol for delivering the email messages, and then specify the HTTP or HTTPS proxy server details.
- Step 5. Click OK.

Adding licenses

Your storage system software was installed at the factory. Storage Manager will automatically add the software to its list of licenses. If the software was not installed at the factory or if you want to add additional software licenses, you can add the software license by using Storage Manager.

Before you begin

The software license code for the specific ONTAP service must be available.

About this task

- When you add a new license in a MetroCluster configuration, it is a best practice to add the license on the surviving site cluster as well.
- You cannot use Storage Manager to add the ONTAP Cloud license.

The ONTAP Cloud license is not listed in the license page. Storage Manager does not raise any alert about the entitlement risk status of the ONTAP Cloud license.

· You can upload only capacity based licenses.

The capacity based licenses are of " json " type.

- Step 1. Click Configuration → Licenses.
- Step 2. Click Add.
- Step 3. In the Add License dialog box, perform the appropriate steps:

If you want to	Do this
Add a capacity based license	Click Browse , and then select the capacity based license file.
	2. Click Add .

If you want to	Do this
Add a license for a specific ONTAP service	Enter the software license key. You can add multiple licenses by entering the software license keys separated by
	commas. 2. Click Add .
	Z. Olick Add .
Add a license for a specific ONTAP service and add a capacity based license	Enter the software license key.
	You can add multiple licenses by entering the software license keys separated by commas.
	Click Browse , and then select the capacity based license file.
	3. Click Add .

The new license is added.

The Add License Status dialog box displays the list of licenses that were added successfully. The window also displays the license keys of the licenses that were not added and the reason why the licenses were not added.

Step 4. Click Close.

Result

The software license is added to your storage system and is displayed in the list of licenses in the Licenses window.

Setting the time zone for a cluster

You can manually set or modify the time zone for a cluster by using the Edit Date and Time dialog box in Storage Manager. You can also add time servers to the cluster.

About this task

Network Time Protocol (NTP) is always enabled on a cluster. You can disable NTP by contacting technical support. However, disabling NTP is not recommended.

You can add the IP addresses of the NTP server at your site. This server is used to synchronize the time across the cluster.

You can specify either an IPv4 address or an IPv6 address for the time server.

- Click 🌠 . Step 1.
- In the Setup panel, click Date and Time. Step 2.
- Step 3. Click Edit.
- Step 4. In the Edit Date and Time dialog box, select the time zone.
- Specify the IP address of the time servers, and then click Add. Step 5.
- Click OK. Step 6.
- Step 7. Verify the changes that you made to the time settings in the Date and Time window.

Monitoring HA pairs

You can use Storage Manager to monitor the node status and interconnect status of all of the high-availability (HA) pairs in a cluster. You can also verify whether takeover or giveback is enabled or has occurred, and view the reasons why takeover or giveback is not currently possible.

- Step 1. Click Configuration → High Availability.
- Step 2. In the High Availability window, click the HA pair image to view details such as the cluster HA status, node status, interconnect status, and hardware model of each node.

 If the cluster management LIF or the data LIFs of a node are not in their home node, a warning message is displayed indicating that the node has some LIFs that are not in the home node.

Setting up the network

Setting up the network consists of creating IPspaces, a broadcast domain, and subnets.

Creating IPspaces

You can create an IPspace by using Storage Manager to configure a single ONTAP cluster for client access from more than one administratively separate network domain, even when the clients use the same IP address subnet range. This enables you to separate client traffic for privacy and security.

About this task

All of the IPspace names must be unique within a cluster and must not consist of names that are reserved by the system, such as "local" or "localhost."

- Step 1. Click the **Network** tab.
- Step 2. In the IPspaces tab, click Create.
- Step 3. In the Create IPspaces dialog box, specify a name for the IPspace that you want to create.
- Step 4. Click Create.

Creating broadcast domains

You can create a broadcast domain by using Storage Manager to provide a logical division of a computer network. In a broadcast domain, all associated nodes can be reached through broadcast at the datalink layer.

- Step 1. Click the **Network** tab.
- Step 2. In the Broadcast Domains tab, click Create.
- Step 3. In the Create Broadcast Domain dialog box, specify the name, MTU size, IPspace, and ports for the broadcast domain that you want to create.
- Step 4. Click Create.

Creating subnets

You can create a subnet by using Storage Manager to provide a logical subdivision of an IP network to preallocate the IP addresses. A subnet enables you to create interfaces more easily by specifying a subnet instead of an IP address and network mask values for each new interface.

Before you begin

You must have created the broadcast domain on which the subnet is used.

About this task

If you specify a gateway when creating a subnet, a default route to the gateway is added automatically to the SVM when a LIF is created using that subnet.

- Step 1. Click the **Network** tab.
- Step 2. In the Subnets tab, click Create.
- Step 3. In the Create Subnet dialog box, specify subnet details, such as the name, subnet IP address or subnet mask, range of IP addresses, gateway address, and broadcast domain. You can specify the IP addresses as a range, as comma-separated multiple addresses, or as a mix of both.
- Click Create. Step 4.

Setting up physical storage

Setting up the physical storage consists of assigning disks to nodes, zeroing the spare disks, and creating aggregates.

Assigning disks to nodes

You can use Storage Manager to assign ownership of an unassigned disk to a specific node to increase the capacity of an aggregate or storage pool.

About this task

- You can assign disks if the following conditions are true:
 - The container type of the selected disks must be "unassigned".
 - The disks must be connected to nodes in an HA pair.
 - The disks must be visible to the node.
- For MetroCluster configurations, you cannot use Storage Manager to assign disks.

You must use the command-line interface instead.

- Step 1. Click Storage → Aggregates & Disks → Disks.
- Step 2. In the Disks window, select the **Inventory** tab.
- Step 3. Select the disks that you want to assign, and then click **Assign**.
- In the Assign Disks dialog box, select the node to which you want to assign the disks. Step 4.
- Step 5. Click **Assign**.

Zeroing spare disks

You can use Storage Manager to erase all the data and to format the spare disks by writing zeros to the disk. These disks can then be used in new aggregates.

About this task

When you zero the spare disks, all the spares in the cluster, including array LUNs, are zeroed. You can zero the spare disks for a specific node or for the entire cluster.

- Step 1. Click Storage → Aggregates & Disks → Disks.
- In the Disks window, select the Inventory tab. Step 2.
- Step 3. Click **Zero Spares**.
- Step 4. In the Zero Spares dialog box, select a node or "All nodes" from which you want to zero the disks.

- Step 5. Select the **Zero all non-zeroed spares** check box to confirm the zeroing operation.
- Step 6. Click Zero Spares.

Provisioning storage through aggregates

You can create an aggregate based on storage recommendations or manually depending on your requirement. You can create Flash Pool aggregates, SnapLock aggregates, and a FabricPool-enabled aggregates to provide storage for one or more volumes by using Storage Manager.

Before you begin

You must have enough spare disks to create an aggregate.

About this task

You cannot perform the following actions by using Storage Manager:

• Combine disks of different sizes even if there are enough spare disks of different sizes.

You can initially create an aggregate with disks of the same size and then add disks of a different size later.

· Combine disks with different checksum types.

You can initially create an aggregate with a single checksum type and add storage of a different checksum type later.

Provisioning storage by creating an aggregate based on storage recommendations

You can use Storage Manager to create an aggregate based on storage recommendations. Storage Manager analyzes the configuration of your storage system and provides storage recommendations such as the number of aggregates that will be created, the available nodes, and the available spare disks.

About this task

- You cannot create an aggregate based on storage recommendations in ONTAP Cloud, ONTAP Select, and MetroCluster configurations.
- Errors, if any, are displayed on the screen.

You can fix these errors and then create an aggregate based on the storage recommendations, or you can create an aggregate manually.

Step 1. Create an aggregate by using one of the following methods:

Click Applications & Tiers → Storage Tiers → Add Aggregate.

Click Storage → Aggregate & Disks → Aggregates → Create .

- Step 2. Review the storage recommendations, and then click **Submit**. The Information dialog box displays the status of the aggregates.
- Step 3. Optional: Click **Run in Background** to navigate to the Aggregates window.
- Step 4. Click **Refresh** to view the aggregates that are created.

Provisioning storage by creating an aggregate manually

You can manually create an aggregate that consists of only HDDs or only SSDs by using Storage Manager .

Before you begin

All of the disks must be of the same size.

About this task

- If you are creating an aggregate on a four-node cluster in ONTAP Select, the mirrored aggregate option is selected by default.
- If the disk type of the aggregate disks is FSAS or MSATA, and the disk size is equal to or larger than 10 TB, then RAID-TEC is the only option available for RAID type.
- Step 1. Create an aggregate by using one of the following methods:

Click Applications & Tiers → Storage Tiers → Add Aggregate.

Click Storage → Aggregate & Disks → Aggregates → Create.

- Step 2. Enable the **Manually Create Aggregate** option to create an aggregate.
- Step 3. To create an aggregate:
 - Specify the name of the aggregate, the disk type, and the number of disks or partitions to include in the aggregate.

The minimum hot spare rule is applied to the disk group that has the largest disk size.

- Modify the RAID configuration of the aggregate:
 - 1. Click Change.
 - 2. In the Change RAID Configuration dialog box, specify the RAID type and the RAID group

RAID-DP is the only supported RAID type for shared disks.

- 3. Click Save.
- c. If you want to mirror the aggregate, select the **Mirror this aggregate** check box. For MetroCluster configurations, creating unmirrored aggregates is restricted. Therefore, the mirroring option is enabled by default for MetroCluster configurations.

Step 4. Click Create.

Result

The aggregate is created with the specified configuration, and is added to the list of aggregates in the Aggregates window.

Provisioning storage by creating a Flash Pool aggregate manually

You can use Storage Manager to create a Flash Pool aggregate manually, or to convert an existing HDD aggregate to a Flash Pool aggregate by adding SSDs. When you create a new HDD aggregate, you can provision an SSD cache to it and create a Flash Pool aggregate.

Before you begin

- You must be aware of the platform-specific best practices and workload-specific best practices for the Flash Pool aggregate SSD tier size and configuration.
- All of the HDDs must be in the zeroed state.
- If you want to add SSDs to the aggregate, all of the existing SSDs and dedicated SSDs must be of the same size.

- You cannot use partitioned SSDs while creating a Flash Pool aggregate.
- You cannot mirror the aggregates if the cache source is storage pools.

- If you are creating an aggregate on a four-node cluster in ONTAP Select, the mirrored aggregate option is selected by default.
- If the disk type of the aggregate disks is FSAS or MSATA, and the disk size is equal to or larger than 10 TB, then RAID-TEC is the only option available for RAID type.
- Step 1. Create an aggregate by using one of the following methods:
 - Click Applications & Tiers → Storage Tiers → Add Aggregate.
 - Click Storage → Aggregate & Disks → Aggregates → Create .
- Step 2. Enable the **Manually Create Aggregate** option to create an aggregate.
- Step 3. In the Create Aggregate window, specify the name of the aggregate, the disk type, and the number of disks or partitions to include for the HDDs in the aggregate.
- Step 4. If you want to mirror the aggregate, select the **Mirror this aggregate** check box.

 For MetroCluster configurations, creating unmirrored aggregates is restricted. Therefore, the mirroring option is enabled by default for MetroCluster configurations.
- Step 5. Click Use Flash Pool Cache with this aggregate.
- Step 6. Specify the cache source:

If you want to select the cache source as	Then
Storage pools	Select Storage pools as the Cache Source .
	Select the storage pool from which the cache can be obtained, and then specify the cache size.
	3. Modify the RAID type, if required.
Dedicated SSDs	Select Dedicated SSDs as the Cache Source .
	Select the SSD size and the number of SSDs to include in the aggregate.
	3. Modify the RAID configuration, if required:
	a. Click Change .
	 b. In the Change RAID Configuration dialog box, specify the RAID type and the RAID group size.
	c. Click Save .

Step 7. Click Create.

Result

The Flash Pool aggregate is created with the specified configuration, and is added to the list of aggregates in the Aggregates window .

Provisioning storage by creating a SnapLock aggregate manually

You can use Storage Manager to create a SnapLock Compliance aggregate or a SnapLock Enterprise aggregate manually. You can create SnapLock volumes on these aggregates, which provide "write once, read many" (WORM) capabilities.

Before you begin

The SnapLock license must have been added.

About this task

- In MetroCluster configurations, you can create only SnapLock Enterprise aggregates.
- For array LUNs, only SnapLock Enterprise aggregates are supported.
- If the disk type of the aggregate disks is FSAS or MSATA, and the disk size is equal to or larger than 10 TB, then RAID-TEC is the only option available for RAID type.
- Step 1. Create a SnapLock aggregate by using one of the following methods:

Click Applications & Tiers → Storage Tiers → Add Aggregate.

Click Storage → Aggregate & Disks → Aggregates → Create.

- Step 2. Enable the **Manually Create Aggregate** option to create an aggregate.
- Step 3. To create a SnapLock aggregate:
 - Specify the name of the aggregate, the disk type, and the number of disks or partitions to include in the aggregate.
 - You cannot change the name of a SnapLock Compliance aggregate after you create the aggregate.

The minimum hot spare rule is applied to the disk group that has the largest disk size.

- Modify the RAID configuration of the aggregate:
 - 1. Click Change.
 - 2. In the Change RAID Configuration dialog box, specify the RAID type and the RAID group

Shared disks support two RAID types: RAID-DP and RAID-TEC.

- 3. Click Save.
- Specify the SnapLock type.
- If you have not initialized the system ComplianceClock, select the Initialize ComplianceClock check box.

This option is not displayed if the ComplianceClock is already initialized on the node.

Note: You must ensure that the current system time is correct. The ComplianceClock is set based on the system clock. Once the ComplianceClock is set, you cannot modify or stop the ComplianceClock.

e. Optional: If you want to mirror the aggregate, select the **Mirror this aggregate** check box. For MetroCluster configurations, creating unmirrored aggregates is restricted. Therefore, the mirroring option is enabled by default for MetroCluster configurations.

By default, the mirroring option is disabled for SnapLock Compliance aggregates.

Click Create. Step 4.

Provisioning storage by creating a FabricPool-enabled aggregate manually

You can use Storage Manager to create a FabricPool-enabled aggregate manually or to convert an existing SSD aggregate to a FabricPool-enabled aggregate by attaching an external capacity tier to the SSD aggregate.

Before you begin

- You must have created an external capacity tier and attached the external capacity tier to the cluster in which the SSD aggregate resides.
- An on-premises external capacity tier must have been created.
- A dedicated network connection must exist between the external capacity tier and the aggregate.

About this task

 The supported external capacity tiers are StorageGRID, Amazon AWS S3, and Microsoft Azure Blob storage.

Notes:

- Azure Stack, which is an on-premises Azure services, is not supported.
- If you want to use Amazon AWS S3 or Microsoft Azure Blob storage as an external capacity tier, you
 must have the FabricPool capacity license.
- FabricPool-enabled aggregates are not supported on MetroCluster configurations.
- Step 1. Create a FabricPool-enabled aggregate by using one of the following methods:

Click Applications & Tiers → Storage Tiers → Add Aggregate.

Click Storage → Aggregate & Disks → Aggregates → Create.

- Step 2. Enable the **Manually Create Aggregate** option to create an aggregate.
- Step 3. To create a FabricPool-enabled aggregate:
 - Specify the name of the aggregate, the disk type, and the number of disks or partitions to include in the aggregate.

Note: Only all flash (all SSD) aggregates support FabricPool-enabled aggregates.

The minimum hot spare rule is applied to the disk group that has the largest disk size.

- b. Modify the RAID configuration of the aggregate:
 - 1. Click Change.
 - 2. In the Change RAID Configuration dialog box, specify the RAID type and the RAID group size.

RAID-DP is the only supported RAID type for shared disks.

- 3. Click Save.
- Step 4. Select the **FabricPool** checkbox, and then select an external capacity tier from the list.
- Step 5. Click Create.

Setting up logical storage

Setting up the logical storage consists of creating storage virtual machines (SVMs) and volumes.

Creating SVMs

You can use Storage Manager to create fully configured storage virtual machines (SVMs) that can serve data immediately. A cluster can have one or more SVMs .

Before you begin

- The cluster must have at least one non-root aggregate in the online state.
- The aggregate must have sufficient space for the SVM root volume.

- You must have synchronized the time across the cluster by configuring and enabling NTP to prevent CIFS creation and authentication failures.
- The protocols that you want to configure on the SVM must be licensed.
- You must have configured the CIFS protocol for secure DDNS to work.

About this task

- While creating SVMs, you can perform the following tasks:
 - Create and fully configure SVMs.
 - Configure the volume type that is allowed on SVMs.
 - Create and configure SVMs with minimal network configuration.
 - Delegate the administration to SVM administrators.
- To name the SVM, you can use alphanumeric characters and the following special characters: "." (period), " - " (hyphen), and " _ " (underscore).

The SVM name should start with an alphabet or " " (underscore) and must not contain more than 47 characters.

Note: You should use unique fully qualified domain names (FQDNs) for the SVM name such as vs0. example.com.

You can establish SnapMirror relationships only between volumes that have the same language settings.

The language of the SVM determines the character set that is used to display file names and data for all NAS volumes in the SVM.

- You cannot use a SnapLock aggregate as the root aggregate of SVMs.
- Click Storage → SVMs. Step 1.
- Step 2. Click Create.
- In the Storage Virtual Machine (SVM) Setup window, specify the following details: Step 3.
 - SVM name
 - IPspace allocated to the SVM
 - Volume type allowed
 - Protocols allowed
 - SVM language
 - Security style of the root volume
 - Root aggregate

The default language setting for any SVM is C.UTF-8.

By default, the aggregate with the maximum free space is selected as the container for the root volume of the SVM. Based on the protocols selected, the default security style and the root aggregate are selected.

The security style is set to NTFS if you select CIFS protocol or a combination of CIFS protocol with the other protocols. The security style is set to UNIX if you select NFS, iSCSI, NVMe, or FC/FCoE, or a combination of these protocols.

Note: NVMe does not allow the combination of protocols.

In a MetroCluster configuration, only the aggregates that are contained in the cluster are displayed.

Step 4. Specify the DNS domain names and the name server IP addresses to configure the DNS services. The default values are selected from the existing SVM configurations.

Step 5. Optional: When configuring a data LIF to access data using a protocol, specify the target alias, subnets, and the number of LIFs per node.

You can select the **Review or Modify LIFs configuration (Advanced Settings)** checkbox to modify the number of portsets in the LIF.

You can edit the details of the portset in a particular node by selecting the node from the nodes list in the details area.

- Step 6. Optional: Enable host-side applications such as SnapDrive and SnapManager for the SVM administrator by providing the SVM credentials.
- Step 7. Optional: Create a new LIF for SVM management by clicking Create a new LIF for SVM management, and then specify the portsets and the IP address with or without a subnet for the new management LIF.
 For CIFS and NFS protocols, data LIFs have management access by default. You must create a new management LIF only if required. For iSCSI, FC and NVMe protocols, a dedicated SVM management LIF is required because data protocols and management protocols cannot share the same LIF.
- Step 8. Click **Submit & Continue** .

 The SVM is created with the specified configuration.

Result

The SVM that you created is started automatically. The root volume name is automatically generated as SVM name_root. By default, the vsadmin user account is created and is in the locked state.

After you finish

You must configure at least one protocol on the SVM to allow data access.

Configuring CIFS and NFS protocols on SVMs

You can use Storage Manager to configure CIFS and NFS protocols on a storage virtual machine (SVM) to provide file-level data access for NAS clients. To enable the CIFS protocol, you must create data LIFs and the CIFS server. To enable the NFS protocol, you can specify the NIS details and the data LIFs.

Before you begin

- The protocols that you want to configure or enable on the SVM must be licensed.
 - If the protocol that you want to configure is not enabled on the SVM , you can use the Edit Storage Virtual Machine window to enable the protocol for the SVM .
- You must have the Active Directory, organizational unit, and administrative account credentials for configuring the CIFS protocol.

About this task

SnapLock aggregates are not considered for automatically creating volumes.

- Step 1. If you have not configured the protocols while creating the SVM, click Storage → SVMs.
- Step 2. Select the SVM, and then click **SVM Settings**.
- Step 3. In the Protocols pane, click the protocol that you want to configure.
- Step 4. In the Data LIF Configuration section, if you want to retain the same data LIF configuration for both CIFS and NFS, select the **Retain the CIFS data LIF's configuration for NFS client** check box.

If you do not retain the same data LIF configuration for both CIFS and NFS, you must specify the IP address and ports separately for CIFS and NFS.

Step 5. Specify the IP address by choosing one of the following options:

If you want to	Then
Specify the IP address by using a subnet	Select Using a subnet .
	In the Add Details dialog box, select the subnet from which the IP address must be assigned.
	For intercluster LIFs, only the subnets that are associated with the selected IPspace are displayed.
	 If you want to assign a specific IP address to the interface, select Use a specific IP address, and then type the IP address.
	The IP address that you specify is added to the subnet if the IP address is not already present in the subnet range.
	4. Click OK .
Specify the IP address manually without using	1. Select Without a subnet.
a subnet	In the Add Details dialog box, perform the following steps:
	 a. Specify the IP address and the network mask or prefix.
	b. Optional: Specify the gateway.
	 c. If you do not want to use the default value for the Destination field, specify a new destination value.
	If you do not specify a destination value, the Destination field is populated with the default value based on the family of the IP address.
	If a route does not exist, a new route is automatically created based on the gateway and destination.
	3. Click OK .

- Step 6. Specify a port to create a data LIF:
 - a. Click Browse.
 - b. In the Select Network Port or Adapter dialog box, select a port.
 - c. Click OK.
- Step 7. Configure the CIFS server by performing the following steps:
 - a. Specify the following information to create a CIFS server:
 - · CIFS server name
 - Active Directory to associate with the CIFS server

- Organizational unit (OU) within the Active Directory domain to associate with the CIFS server
 - By default, this parameter is set to CN=Computers.
- Credentials of an administrative account that has sufficient privileges to add the CIFS server to the OU
- b. Select **Encrypt Data while accessing all shares of this SVM** to enable SMB 3.0 encryption for all of the shares of the SVM.
- c. Provision a volume for CIFS storage when configuring the protocol by specifying the share name, size of the share, and access permissions.
- d. Select **Encrypt Data while accessing this share** to enable SMB 3.0 encryption for a particular share.
- Step 8. Optional: Configure NIS services:
 - Specify the IP addresses of the NIS servers and NIS domain name to configure NIS services on the SVM.
 - b. Select the appropriate database type for which you want to add the "nis" name service source.
 - Provision a volume for NFS storage by specifying the export name, size, and permission.
- Step 9. Click Submit & Continue.

Result

The CIFS server and NIS domain are configured with the specified configuration, and the data LIFs are created. By default, the data LIFs have management access. You can view the configuration details on the Summary page.

Configuring iSCSI protocol on SVMs

You can configure the iSCSI protocol on a storage virtual machine (SVM) to provide block-level data access by using Storage Manager. You can create iSCSI LIFs and portsets and then add the LIFs to the portsets. LIFs are created on the most suitable adapters and are assigned to portsets to ensure data path redundancy.

Before you begin

- The iSCSI license must be enabled on the cluster.
 - If the iSCSI protocol is not enabled on the SVM , you can use the Edit Storage Virtual Machine window to enable the protocol for the SVM .
- All of the nodes in the cluster must be healthy.
- Each node must have at least two data ports, and the port state must be up.

- You can configure the iSCSI protocol while creating the SVM or you can do so at a later time.
- SnapLock aggregates are not considered for automatically creating volumes.
- Step 1. If you have not configured the iSCSI protocol while creating the SVM, click Storage → SVMs.
- Step 2. Select the SVM, and then click SVM Settings.
- Step 3. In the Protocols pane, click **iSCSI**.
- Step 4. Optional: In the Network Access section, specify an alias for the iSCSI target.

 The maximum number of characters for an alias name is 128. If you do not specify a target alias, the SVM name is used as an alias.

Step 5. Specify the number of iSCSI LIFs that can be assigned to a single node.

The minimum number of LIFs per node is one. The maximum number is the minimum of all the ports in the **up** state across the nodes. If the maximum value is an odd number, the previous even number is considered as the maximum value. You can choose any even number in the minimum and maximum value range.

Example

A 4-node cluster has node1, node2, and node3 with six ports each in the **up** state, and node4 with seven ports in the **up** state. The effective maximum value for the cluster is 6. If the number of LIFs that you want to assign to the node is more than two, you must assign at least one portset to each LIF.

Step 6. Specify the network details, including the subnet details, to create iSCSI LIFs:

If you want to	Then
Specify the IP address by using a subnet	 Select Using a subnet. In the Add Details dialog box, select the subnet from which the IP address must be assigned.
	For intercluster LIFs, only the subnets that are associated with the selected IPspace are displayed.
	 If you want to assign a specific IP address to the interface, select Use a specific IP address, and then type the IP address.
	The IP address that you specify is added to the subnet if the IP address is not already present in the subnet range. 4. Click OK .
Specify the IP address manually without using a subnet	Select Without a subnet . On the the Add Details dislant have performe the
	In the Add Details dialog box, perform the following steps:
	 a. Specify the IP address and the network mask or prefix.
	b. Optional: Specify the gateway.
	 c. If you do not want to use the default value for the Destination field, specify a new destination value.
	If you do not specify a destination value, the Destination field is populated with the default value based on the family of the IP address.
	If a route does not exist, a new route is automatically created based on the gateway and destination.
	3. Click OK .

Step 7. Select the broadcast domain.

Step 8. Select the adapter type.

If you have NIC cards configured in your cluster, you should select NIC .

If you have CNS cards configured in your cluster, you should select **CNA**.

If you have ifgrps configured in your cluster, you should select Interface Group.

Note: The ifgrp port must be added in the broadcast domain.

- Step 9. Optional: Provision a LUN for iSCSI storage when configuring the iSCSI protocol by specifying the LUN size, OS type for the LUN, and host initiator details.
- Step 10. If you want to verify or modify the configuration of the automatically generated iSCSI LIFs, select Review or Modify LIFs configuration (Advanced Settings).

You can modify only the LIF name and the home port. By default, the portsets are set to the minimum value. You must specify unique entries. If you specify duplicate LIF names, Storage Manager appends numeric values to the duplicate LIF name.

Based on the selected portset, the LIFs are distributed across the portsets by using a round-robin method to ensure redundancy in case of node failure or port failure.

Step 11. Click Submit & Continue.

Result

The data LIFs and port sets are created with the specified configuration if you select the option to configure the iSCSI protocol. The LIFs are distributed among the portsets based on the selected portset. The iSCSI service is started if all of the LIFs are successfully created.

If LIF creation fails, you can create the LIFs by using the Network Interfaces window, attach the LIFs to the portsets by using the LUNs window, and then start the iSCSI service by using the iSCSI window.

Configuring FC protocol and FCoE protocol on SVMs

You can configure the FC protocol and the FCoE protocol on the storage virtual machine (SVM) for SAN hosts. LIFs are created on the most suitable adapters and are assigned to port sets to ensure data path redundancy. Based on your requirements, you can configure either the FC protocol or the FCoE protocols, or both the protocols by using Storage Manager.

Before you begin

- The FCP license must be enabled on the cluster.
- All of the nodes in the cluster must be healthy.
- Each node must have at least two correctly configured ports for each protocol (FC and FCoE).

About this task

You can configure the FC protocol and the FCoE protocol while creating the SVM or you can configure
the protocols at a later time.

If the protocols are not allowed on the ${\sf SVM}$, you can use the Edit Storage Virtual Machine window to enable the protocols for the ${\sf SVM}$.

- SnapLock aggregates are not considered for automatically creating volumes.
- Step 1. If you have not configured the protocols while creating the SVM, click the **Storage** → **SVMs** tab.
- Step 2. Select the SVM, and then click **SVM Settings**.
- Step 3. In the Protocols pane, click **FC/FCoE**.

- Step 4. In the Data Interface Configuration section, select the corresponding option to configure data LIFs for the FC protocol and the FCoE protocol.
- Step 5. Specify the number of data LIFs per node for each protocol.

 The minimum number of LIFs per node is one. The maximum number is the minimum of all the ports in the up state across the nodes. If the maximum value is an odd number, the previous even number is considered as the maximum value. You can choose any even number in the minimum and maximum value range.

Example

A four-node cluster has node1, node2, and node3 with six ports each in the up state, and node4 with seven ports in the up state. The effective maximum value for the cluster is six. If the number of LIFs that you want to assign to the node is more than two, you must assign at least one port set to each LIF.

- Step 6. If you want to verify or modify the automatically generated LIFs configuration, select **Review or Edit the Interface Association**.

 You can modify only the LIF name and home port. You must ensure that you do not specify duplicate entries.
- Step 7. Optional: Provision a LUN for the FC storage or FCoE storage when configuring the protocol by providing the LUN size, OS type for the LUN, and host initiator details.
- Step 8. Click Submit & Continue.

Result

The data LIFs and port sets are created with the specified configuration if you select the option to configure the FC protocol. The LIFs are distributed accordingly among the port sets. The FCP service is started if all of the LIFs are successfully created for at least one protocol.

If LIF creation fails, you can create the LIFs and start the FCP service from the FC/FCoE window.

Configuring NVMe protocol on SVMs

You can configure the NVMe protocol on a storage virtual machine (SVM) using Storage Manager . You can then create namespaces and assign them to an NVMe subsystem and host.

About this task

The SVM with NVMe should not have any other protocol. If you select NVMe, then the rest of the protocols will be disabled. You can also configure NVMe while creating the SVM.

- Step 1. If you did not configure the NVMe protocol when creating the SVM, click **Storage** \rightarrow **SVMs**.
- Step 2. Select the SVM, and then click **SVM settings**.
- Step 3. In the Protocols pane, click **NVMe**.
- Step 4. Click the link to configure the protocol, as required.

Note: If there are any other protocols enabled, you must deselect these to make NVMe available to select. NVMe cannot be combined with any other protocol.

- Step 5. In the Edit Storage Virtual Machine pane, click on Resource Allocation .
- Step 6. In the **Resource Allocation** tab, you can choose not to delegate volume creation or you can select an aggregate to provision the volumes automatically.
- Step 7. Click on the **Services** tab to configure the Name Service Switch details.
- Step 8. Click Save and Close.

The NVMe protocol is configured on the SVM. After the protocol has been configured, you can start or stop the service using **SVM Settings**

Delegating administration to SVM administrators

After setting up a functional storage virtual machine (SVM) or SVMs with basic network configuration, you can optionally delegate the administration of the SVM to SVM administrators.

About this task

SVM administrators cannot use Storage Manager to manage delegated SVMs. Administrators can manage them only by using the command-line interface (CLI).

- Step 1. In the Administrator Details section, set up a password for the vsadmin user account.
- Step 2. If you want a dedicated LIF for SVM management, select **Create a LIF for SVM management**, and then specify the network details.

 A dedicated SVM management LIF is required for SAN protocols, where data and management protocols cannot share the same LIF. SVM management LIFs can be created only on data ports.
- Step 3. Specify the network details, including subnet details, for creating iSCSI LIFs:

If you want to	Then
Specify the IP address by using a subnet	1. Select Using a subnet .
	In the Add Details dialog box, select the subnet from which the IP address must be assigned.
	For intercluster LIFs, only the subnets that are associated with the selected IPspace are displayed.
	 If you want to assign a specific IP address to the interface, select Use a specific IP address, and then type the IP address.
	The IP address that you specify is added to the subnet if the IP address is not already present in the subnet range.
	4. Click OK .
Specify the IP address manually without using	Select Without a subnet .
a subnet	In the Add Details dialog box, perform the following steps:
	 a. Specify the IP address and the network mask or prefix.
	b. Optional: Specify the gateway.
	 c. If you do not want to use the default value for the Destination field, specify a new destination value.
	If you do not specify a custom value, the Destination field is populated with the default value based on the family of the IP address.
	If a route does not exist, a new route is automatically created based on the gateway and destination.
	3. Click OK .

Step 4. Specify a port for creating a data LIF:

- 1. Click Browse.
- 2. Select a port from the Select Network Port or Adapter dialog box.
- 3. Click OK.

Result

The vsadmin account is unlocked and configured with the password.

The default access methods for the vsadmin account are ONTAP API (ontapi) and SSH (ssh). The SVM administrator can log in to the storage system by using the management IP address.

After you finish

You must assign aggregates to the SVM by using the Edit Storage Virtual Machine dialog box.

Note: If the SVM does not have any assigned aggregates, the SVM administrator cannot create volumes.

Assigning aggregates to SVMs

After creating an SVM for an Infinite Volume, you should assign specific aggregates to it so that the Infinite Volume that you create will use those specific aggregates and not use all the aggregates in the cluster.

Before you begin

You should have reviewed the available aggregates and decided which aggregates the SVM will use.

About this task

You identify which aggregates the Infinite Volume will use by assigning aggregates to its containing SVM with Infinite Volume. If you do not specify the aggregate list for the SVM with Infinite Volume, the Infinite Volume can potentially use all the aggregates in the cluster.

- Step 1. In the Select aggregates section, select the aggregates to assign to the SVM.

 By default, the node root aggregates are not selected. You should not provision volumes on root aggregates because it might cause performance or stability issues.
- Step 2. Click Submit & Continue.

Creating FlexVol volumes

You can create a FlexVol volume for your data by using the Create Volume dialog box in Storage Manager . You should always create a separate volume for your data rather than storing data in the root volume.

Before you begin

- The cluster must contain a non-root aggregate and a storage virtual machine (SVM).
- If you want to create read/write (rw) volumes, you must have configured the protocols for the SVM, and you must have installed either the SnapMirror license or the SnapVault license.
 - If you have not configured the protocols but have installed any one of these licenses, you can create only data protection (DP) volumes.
- For creating an encrypted volume, you must have installed the volume encryption license by using Storage Manager and enabled "key-manager setup" by using the command-line interface (CLI).

You must refresh your web browser after enabling "key-manager setup".

- You can enable storage Quality of Service (QoS) only for a read/write (rw) volume.
- When you create a DP volume on the sync-source SVM in a MetroCluster configuration, the volume is not replicated on the sync-destination SVM.
- When you create a DP volume in a MetroCluster configuration, the source volume is not replicated (mirrored or vaulted) in the destination SVM.
- In a MetroCluster configuration, Storage Manager displays only the following aggregates for creating volumes:
 - In normal mode, when you create volumes on sync-source SVMs or data-serving SVMs in the primary site, only those aggregates that belong to the cluster in the primary site are displayed.
 - In switched-over mode, when you create volumes on sync-destination SVMs or data-serving SVMs in the surviving site, only switched-over aggregates are displayed.

- You cannot encrypt a volume in Cloud Volumes ONTAP.
- If encryption is enabled on the source volume and if the destination cluster is running a version of ONTAP software earlier than ONTAP 9.3, then encryption is disabled on the destination volume by default.
- Step 1. Click Storage → Volumes.
- Step 2. Click Create → Create FlexVol.
- Browse and select the SVM in which you want to create the volume. Step 3.
- Step 4. In the Create Volume dialog box, specify a name for the volume.
- Select the containing aggregate for the volume. Step 5.
- Step 6. Select the **Encrypted** check box to enable encryption for the volume. This option is available only if you have enabled the Volume Encryption license and if the corresponding platform is capable of supporting encryption.
- Select the type of storage for which you are creating this volume. Step 7. You must select **Data Protection** if you are creating a SnapMirror destination volume. You are provided read-only access to this volume.
- Step 8. Specify the tiering policy for the volume.
- Step 9. Specify the size of the volume and the percentage of the total volume size that you want to reserve for Snapshot copies. The default space reserved for Snapshot copies is zero percent for SAN and VMware volumes. For NAS volumes, the default is 5 percent.
- Step 10. Select **Default**, **Thin provisioned**, or **Thick provisioned** for the volume. When thin provisioning is enabled, space is allocated to the volume from the aggregate only when data is written to the volume.

Notes:

- For AFA storage systems, the value of thin provisioning is "Default", and for other storage systems, the value of thick provisioning is "Default".
- For FabricPool-enabled aggregates, the value of thin provisioning is "Default".
- Step 11. If you want to enable deduplication on the volume, make the required changes in the Storage Efficiency tab.

Storage Manager uses the default deduplication schedule. If the specified volume size exceeds the limit that is required for running deduplication, the volume is created and deduplication is not enabled.

For systems with All Flash Optimized personality, inline compression and the auto deduplication schedule are enabled by default.

- Step 12. If you want to enable storage QoS for the FlexVol volume to manage workload performance, select the Manage Storage Quality of Service check box in the Quality of Service tab.
- Step 13. Create a new storage QoS policy group or select an existing policy group to control the input/ output (I/O) performance of the FlexVol volume:

If you want to	Do this
If you want to Create a new policy group	 Select New Policy Group. Specify the policy group name. Specify the minimum throughput limit. You can set the minimum throughput limit only on an AFA platform. You cannot set the minimum throughput limit for volumes on a FabricPool-enabled aggregate. If you do not specify the minimum throughput value or if the minimum throughput value is set to 0, the system automatically displays "None" as the value. This value is case-sensitive. Specify the maximum throughput limit to ensure that the workload of the objects in the policy group does not exceed the specified throughput limit. The minimum throughput limit and the maximum throughput limit must be of the same unit type. If you do not specify the minimum throughput limit, then you can set the maximum throughput limit in IOPS, B/s, KB/s, MB/s, and so on. If you do not specify the maximum throughput value, the system automatically displays "Unlimited" as the value.
	This value is case-sensitive. The unit that you specify does not affect the maximum throughput.
Select an existing policy group	 Select Existing Policy Group, and then click Choose to select an existing policy group from the Select Policy Group dialog box. Specify the minimum throughput limit. You can set the minimum throughput limit only on an AFA platform.
	 You cannot set the minimum throughput limit for volumes on a FabricPool-enabled aggregate. If you do not specify the minimum throughput value or if the minimum throughput value is set to 0, the system

If you want to	Do this
	automatically displays " None " as the value.
	This value is case-sensitive.
	Specify the maximum throughput limit to ensure that the workload of the objects in the policy group does not exceed the specified throughput limit.
	 The minimum throughput limit and the maximum throughput limit must be of the same unit type.
	 If you do not specify the minimum throughput limit, then you can set the maximum throughput limit in IOPS, B/s, KB/s, MB/s, and so on.
	 If you do not specify the maximum throughput value, the system automatically displays "Unlimited" as the value.
	This value is case-sensitive. The unit that you specify does not affect the maximum throughput.
	If the policy group is assigned to more than one object, the maximum throughput that you specify is shared among the objects.

Step 14. Perform the following steps in the Protection tab to protect the volume:

- a. Enable Volume Protection.
- b. Select a relationship for the volume by using the Volume Relationship Type list.
- c. Select a cluster and an SVM for the destination volume.
- d. Enter the volume name suffix.

Step 15. Click Create.

Step 16. Verify that the volume that you created is included in the list of volumes in the Volume window.

The volume is created with UNIX-style security and UNIX 700 " read write execute " permissions for the owner.

Creating SnapLock volumes

You can use Storage Manager to create a SnapLock Compliance volume or a SnapLock Enterprise volume. When you create a volume, you can also set retention times, and choose whether to automate setting the WORM state on data in the volume.

Before you begin

- The SnapLock license must have been installed.
- The SnapLock aggregate must be online.
- For creating an encrypted volume, you must have installed the volume encryption license by using Storage Manager and enabled "key-manager setup" by using the command-line interface (CLI).

You must refresh your web browser after enabling "key-manager setup".

- You can delete a complete SnapLock Enterprise volume or a file in a SnapLock Enterprise volume; however, you cannot delete only the data within a file in a SnapLock Enterprise volume.
- You cannot delete a SnapLock Compliance volume if data is committed to the volume.
- You cannot encrypt a volume in Cloud Volumes ONTAP.
- If encryption is enabled on the source volume and if the destination cluster is running a version of ONTAP software earlier than ONTAP 9.3, then encryption is disabled on the destination volume by default.
- Step 1. Click Storage → Volumes.
- Step 2. Click Create → Create FlexVol .
- Step 3. Browse and select the storage virtual machine (SVM) in which you want to create the volume.
- Step 4. In the Create Volume dialog box, specify a new name if you want to change the default name of the volume.
 - You cannot change the name of a SnapLock Compliance volume after you create the volume.
- Step 5. Select the container aggregate for the volume.

 You must select a SnapLock Compliance aggregate or SnapLock Enterprise aggregate to create a SnapLock volume. The volume inherits the SnapLock type from the aggregate, and the SnapLock type cannot be changed after the volume is created; therefore, you must select the correct aggregate.
- Step 6. Select the **Encrypted** checkbox to enable encryption for the volume.

 This option is available only if you have enabled the Volume Encryption license and if the corresponding platform is capable of supporting encryption.
- Step 7. Select the type of storage for which you are creating this volume.

 If you are creating a SnapMirror destination volume, you must select **Data Protection**. You are provided read-only access to this volume.
- Step 8. Specify the size of the volume and the percentage of the total volume size that you want to reserve for Snapshot copies.

 The default space that is reserved for Snapshot copies is zero percent for SAN and VMware volumes. For NAS volumes, the default is 5 percent.
- Step 9. Optional: Select **Thin Provisioned** to enable thin provisioning for the volume.

 When thin provisioning is enabled, space is allocated to the volume from the aggregate only when data is written to the volume.
- Step 10. Optional: Make the required changes in the Storage Efficiency tab to enable deduplication on the volume.
 - Storage Manager uses the default deduplication schedule. If the specified volume size exceeds the limit that is required for running deduplication, the volume is created, and deduplication is not enabled
- Step 11. Select the SnapLock tab, and then perform the following steps:
 - a. Specify the autocommit period. The file in the volume will remain unchanged for the period that you specify before the file is committed to the WORM state. To set files to the WORM state manually, you must select **Not specified** as the autocommit setting.
 - The values must be in the range of 5 minutes to 10 years.
 - b. Specify the minimum retention period and maximum retention period. The values must be in the range of 1 day through 70 years or Infinite.
 - c. Select the default retention period.

The default retention period must be within the specified minimum retention period and maximum retention period.

- Step 12. Optional: Select the Manage Storage Quality of Service checkbox in the Quality of Service tab to enable storage QoS for the FlexVol volume in order to manage workload performance.
- Step 13. Create a new storage QoS policy group or select an existing policy group to control the input/ output (I/O) performance of the FlexVol volume.

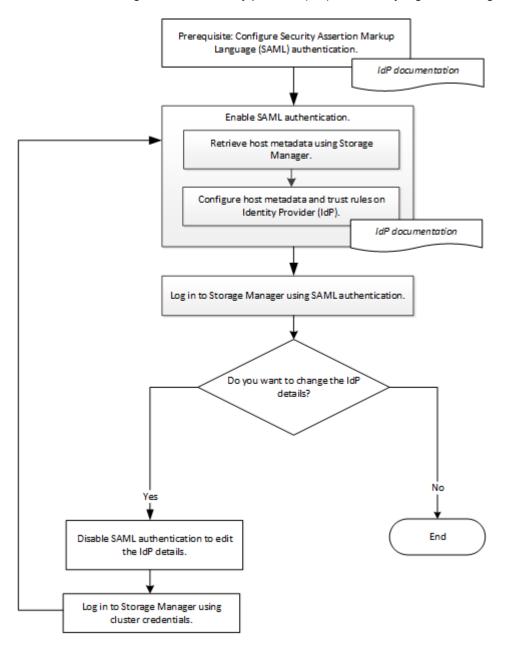
If you want to	Do this
If you want to Create a new policy group	 Select New Policy Group . Specify the policy group name. Specify the minimum throughput limit. You can set the minimum throughput limit only on an AFA platform. You cannot set the minimum throughput limit for volumes on a FabricPool-enabled aggregate. If you do not specify the minimum throughput value or if the minimum throughput value is set to 0, the system automatically displays "None" as the value. This value is case-sensitive. Specify the maximum throughput limit to ensure that the workload of the objects in the policy group does not exceed the specified throughput limit. The minimum throughput limit and the maximum throughput limit must be of the same unit type. If you do not specify the minimum throughput limit, then you can set the maximum throughput limit in IOPS, B/s, KB/s, MB/s, and so on. If you do not specify the maximum throughput value, the system automatically displays "Unlimited" as the value. This value is case-sensitive. The unit
Select an existing policy group	that you specify does not affect the maximum throughput. 1. Select Existing Policy Group , and then
	click Choose to select an existing policy group from the Select Policy Group dialog box.
	Specify the minimum throughput limit.
	 You can set the minimum throughput limit only on an AFA platform.
	 You cannot set the minimum throughput limit for volumes on a FabricPool-enabled aggregate.
	 If you do not specify the minimum throughput value or if the minimum throughput value is set to 0, the system

If you want to	Do this
	automatically displays " None " as the value.
	This value is case-sensitive.
	 Specify the maximum throughput limit to ensure that the workload of the objects in the policy group does not exceed the specified throughput limit.
	 The minimum throughput limit and the maximum throughput limit must be of the same unit type.
	 If you do not specify the minimum throughput limit, then you can set the maximum throughput limit in IOPS, B/s, KB/s, MB/s, and so on.
	 If you do not specify the maximum throughput value, the system automatically displays "Unlimited" as the value.
	This value is case-sensitive. The unit that you specify does not affect the maximum throughput.
	If the policy group is assigned to more than one object, the maximum throughput that you specify is shared among the objects.

Step 14. Perform the following steps in the Protection tab to protect the volume:

- Enable Volume Protection.
- Select a relationship for the volume by using the Volume Relationship Type list. b.
- Select a cluster and an SVM for the destination volume.
- d. Specify the volume name suffix.

Step 15. Click Create.


Step 16. Verify that the volume that you created is included in the list of volumes in the Volume window.

Result

The volume is created with UNIX-style security and UNIX 700 " read write execute " permissions for the owner.

Chapter 6. Setting up SAML authentication

You can set up Security Assertion Markup Language (SAML) authentication so that remote users are authenticated through a secure identity provider (IdP) before they log in to Storage Manager.

Enabling SAML authentication

You can use Storage Manager to configure Security Assertion Markup Language (SAML) authentication so that remote users can log in by using a secure identity provider (IdP).

Before you begin

The IdP that you plan to use for remote authentication must be configured.

© Copyright Lenovo 2018, 2023 49

Note: See the documentation that is provided by the IdP that you have configured.

You must have the URI of the IdP.

About this task

The IdPs that have been validated with Storage Manager are Shibboleth and Active Directory Federation Services.

Note: After SAML authentication is enabled, only remote users can access the Storage Manager GUI. Local users cannot access the Storage Manager GUI after SAML authentication is enabled.

- Step 1. Click Configuration → Authentication .
- Step 2. Select the Enable SAML authentication check box.
- Step 3. Configure Storage Manager to use SAML authentication:
 - a. Enter the URI of the IdP.
 - b. Enter the IP address of the host system.
 - c. If required, change the host system certificate.
- Step 4. Click Retrieve Host Metadata to retrieve the host URI and host metadata information.
- Step 5. Copy the host URI or host metadata details, access your IdP, and then specify the host URI or host metadata details and the trust rules in the IdP window.

Note: See the documentation that is provided by the IdP that you have configured.

Step 6. Click Save.

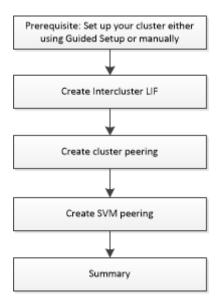
The IdP login window is displayed.

Step 7. Log in to Storage Manager by using the IdP login window.

After the IdP is configured, if the user tries to log in by using the fully qualified domain name (FQDN), IPv6, or a cluster management LIF, then the system automatically changes the IP address to the IP address of the host system that was specified during the IdP configuration.

Disabling SAML authentication

You can disable Security Assertion Markup Language (SAML) authentication if you want to disable remote access to Storage Manager, or to edit the SAML configuration.


About this task

Disabling SAML authentication does not delete SAML configuration.

- Step 1. Click Configuration → Authentication.
- Step 2. Clear the **Enable SAML authentication** check box.
- Step 3. Click **Save** . Storage Manager restarts.
- Step 4. Log in to Storage Manager by using the cluster credentials.

Chapter 7. Setting up peering

Setting up peering involves creating intercluster logical interfaces (LIFs) on each node, creating cluster peering, and creating SVM peering.

Prerequisites for cluster peering

Before you set up cluster peering, you should confirm that the connectivity, port, IP address, subnet, firewall, and cluster-naming requirements are met.

Connectivity requirements

Intercluster LIFs must have *pair-wise full-mesh connectivity:* Every intercluster LIF on the local cluster must be able to communicate with every intercluster LIF on the remote cluster.

Although it is not required, it is typically simpler to configure the IP addresses used for intercluster LIFs in the same subnet. The IP addresses can reside in the same subnet as data LIFs, or in a different subnet. The subnet used in each cluster must meet the following requirements:

• The subnet must belong to the broadcast domain that contains the ports that are used for intercluster communication.

Intercluster LIFs can have an IPv4 address or an IPv6 address.

Port requirements

You can use dedicated ports for intercluster communication, or share ports used by the data network. Ports must meet the following requirements:

- All ports that are used to communicate with a given remote cluster must be in the same IPspace.
 - You can use multiple IPspaces to peer with multiple clusters. Pair-wise full-mesh connectivity is required only within an IPspace.
- The broadcast domain that is used for intercluster communication must include at least two ports per node so that intercluster communication can fail over from one port to another port.

Ports added to a broadcast domain can be physical network ports, VLANs, or interface groups (ifgrps).

All ports must be cabled.

© Copyright Lenovo 2018, 2023 51

- All ports must be in a healthy state.
- The MTU settings of the ports must be consistent.

Firewall requirements

Firewalls and the intercluster firewall policy must allow the following protocols:

- ICMP service
- TCP to the IP addresses of all the intercluster LIFs over the ports 10000, 11104, and 11105
- HTTPS

The default intercluster firewall policy allows access through the HTTPS protocol and from all IP addresses (0.0.0.0/0). You can modify or replace the policy if necessary.

Cluster requirements

Clusters must meet the following requirements:

 The time on the clusters in a cluster peering relationship must be synchronized within 300 seconds (5 minutes).

Cluster peers can be in different time zones.

Creating intercluster LIFs

Creating intercluster logical interfaces (LIFs) enables the cluster network to communicate with a node. You must create an intercluster LIF on each node in each cluster for which you want to create a peer relationship.

- Click Configuration → Advanced Cluster Setup. Step 1.
- In the Setup Advanced Cluster Features window, click Proceed next to the Cluster Peering option. Step 2.
- Step 3. Select an IPspace from the IPspace list.
- Step 4. Enter the IP address, port, network mask, and gateway details of each node.
- Step 5. Click Submit and Continue.

After you finish

You should enter the cluster details in the Cluster Peering window to continue with cluster peering.

Creating cluster peer relationships

You can create an authenticated cluster peer relationship to connect clusters so that the clusters in the peer relationship can communicate securely with each other.

Before you begin

- You must have reviewed and completed the requirements for performing this task.
 - "Prerequisites for cluster peering" on page 51
- You must have created intercluster logical interfaces (LIFs).

- If you want to create a peer relationship with a cluster running Data ONTAP 8.2.2 or earlier, you must use the command-line interface (CLI).
- In a MetroCluster configuration, when you create a peer relationship between the primary cluster and an external cluster, it is a best practice to create a peer relationship between the surviving site cluster and the external cluster as well.

- You can create a custom passphrase or you can use the system-generated passphrase to authenticate the cluster peer relationship.
- Step 1. Click Configuration → Advanced Cluster Setup.
- Step 2. In the Target Cluster Intercluster LIF IP addresses filed, enter the IP addresses of the remote cluster's intercluster LIFs.
- Step 3. In the Passphrase field, specify a passphrase for the cluster peer relationship.

 If you specify a custom passphrase, the passphrase that you specify will be validated against the passphrase of the peered cluster to ensure an authenticated cluster peer relationship.
 - If the names of the local cluster and remote cluster are identical, and if you are using a custom passphrase, an alias is created for the remote cluster.
- Step 4. Optional: To generate a passphrase from the remote cluster, enter the management IP address of the remote cluster.
- Step 5. Initiate cluster peering.

If you want to	Do this
Initiate cluster peering from the initiator cluster	Click Initiate Cluster Peering .
Initiate cluster peering from the remote cluster (Applicable if you have created a custom passphrase)	Enter the management address of the remote cluster.
	Click the Management URL link to access the remote cluster.
	3. Click Create Cluster Peering .
	Specify the intercluster LIF IP addresses and passphrase of the initiator cluster.
	5. Click Initiate Peering .
	Access the initiator cluster, and then click Validate Peering .

After you finish

You should specify the SVM details in the SVM Peering window to continue with the peering process.

Creating SVM peers

SVM peering enables you to establish a peer relationship between two storage virtual machines (SVMs) for data protection.

Before you begin

You must have created a peer relationship between the clusters in which the SVMs that you plan to peer reside.

- The clusters that you can select as target clusters are listed when you create SVM peers by using the Configuration → SVM Peers window.
- If the target SVM resides on a cluster in a system running ONTAP 9.2 or earlier, SVM peering cannot be accepted by using Storage Manager.

Note: In such a scenario, you can use the command-line interface (CLI) to accept SVM peering.

- Step 1. Select the initiator SVM.
- Step 2. Select the target SVM from the list of permitted SVMs.
- Step 3. Specify the name of the target SVM in the Enter an SVM field.

Note: If you have navigated from the Configuration → SVM Peers window, you should select the target SVM from the list of peered clusters.

Initiate SVM peering. Step 4.

If you want to	Do this
Initiate SVM peering from the initiator cluster	Click Initiate SVM Peering .
Accept SVM peering from the remote cluster	 Note: Applicable for non-permitted SVMs Specify the management address of the remote cluster. Click the Management URL link to access the SVM Peer window of the remote cluster. On the remote cluster, accept the Pending SVM Peer request. Access the initiator cluster, and then click Validate Peering.

Step 5. Click Continue.

After you finish

You can view the intercluster LIFs, cluster peer relationship, and SVM peer relationship in the Summary window.

What passphrases are

You can use a passphrase to authorize peering requests. You can use a custom passphrase or a systemgenerated passphrase for cluster peering.

- You can generate a passphrase on the remote cluster.
- The minimum required length for a passphrase is eight characters.
- The passphrase is generated based on the IPspace.
- If you are using a system-generated passphrase for cluster peering, after you enter the passphrase in the initiator cluster, peering is authorized automatically.
- If you are using a custom passphrase for cluster peering, you have to navigate to the remote cluster to complete the peering process.

Chapter 8. Managing clusters

You can use Storage Manager to manage clusters.

Understanding quorum and epsilon

Quorum and epsilon are important measures of cluster health and function that together indicate how clusters address potential communications and connectivity challenges.

Quorum is a precondition for a fully functioning cluster. When a cluster is in quorum, a simple majority of nodes are healthy and can communicate with each other. When quorum is lost, the cluster loses the ability to accomplish normal cluster operations. Only one collection of nodes can have quorum at any one time because all of the nodes collectively share a single view of the data. Therefore, if two non-communicating nodes are permitted to modify the data in divergent ways, it is no longer possible to reconcile the data into a single data view.

Each node in the cluster participates in a voting protocol that elects one node *master*; each remaining node is a *secondary*. The master node is responsible for synchronizing information across the cluster. When quorum is formed, it is maintained by continual voting. If the master node goes offline and the cluster is still in quorum, a new master is elected by the nodes that remain online.

Because there is the possibility of a tie in a cluster that has an even number of nodes, one node has an extra fractional voting weight called *epsilon*. If the connectivity between two equal portions of a large cluster fails, the group of nodes containing epsilon maintains quorum, assuming that all of the nodes are healthy. For example, the following illustration shows a four-node cluster in which two of the nodes have failed. However, because one of the surviving nodes holds epsilon, the cluster remains in quorum even though there is not a simple majority of healthy nodes.

Epsilon is automatically assigned to the first node when the cluster is created. If the node that holds epsilon becomes unhealthy, takes over its high-availability partner, or is taken over by its high-availability partner, then epsilon is automatically reassigned to a healthy node in a different HA pair.

Taking a node offline can affect the ability of the cluster to remain in quorum. Therefore, ONTAP issues a warning message if you attempt an operation that will either take the cluster out of quorum or else put it one outage away from a loss of quorum. You can disable the quorum warning messages by using the cluster quorum-service options modify command at the advanced privilege level.

In general, assuming reliable connectivity among the nodes of the cluster, a larger cluster is more stable than a smaller cluster. The quorum requirement of a simple majority of half the nodes plus epsilon is easier to maintain in a cluster of 24 nodes than in a cluster of two nodes.

A two-node cluster presents some unique challenges for maintaining quorum. Two-node clusters use *cluster HA*, in which neither node holds epsilon; instead, both nodes are continuously polled to ensure that if one node fails, the other has full read-write access to data, as well as access to logical interfaces and management functions.

© Copyright Lenovo 2018, 2023 55

Dashboard window

The Dashboard window contains multiple panels that provide cumulative at-a-glance information about your system and its performance.

You can use the Dashboard window to view information about important alerts and notifications, the efficiency and capacity of aggregates and volumes, the nodes that are available in a cluster, the status of the nodes in a high-availability (HA) pair, the most active applications and objects, and the performance metrics of a cluster or a node.

Alerts and Notifications

Health Overview

Displays all alerts in red, such as emergency EMS events, offline node details, broken disk details, license entitlements that are in high risk, and offline network port details. Displays all notifications in yellow, such as health monitor notifications that occurred in the past 24 hours at the cluster level, license entitlements that are in medium risk. unassigned disk details, the number of migrated LIFs, volume move operations that failed, and volume move operations that required administrative intervention in the past 24 hours.

The Alerts and Notifications panel displays up to three alerts and notifications beyond which a View-All link is displayed. You can click the View-All link to view more information about the alerts and notifications.

The refresh interval for the Alerts and Notifications panel is one minute.

Displays the aggregates and volumes that are nearing capacity, the storage efficiency of a cluster or node, and the protection details of top volumes.

The Capacity tab displays the top online aggregates that are nearing capacity, in descending order of used space.

The Capacity tab provides a link to the number of volumes with the highest capacity utilized when you enter a valid value in the Volumes exceeding used capacity of field. It also displays the amount of inactive (cold) data available in the cluster.

The Efficiency tab displays the storage efficiency savings for a cluster or node. You can view the total logical space used, total physical space used, overall savings from storage efficiency, data reduction ratio, FlexClone volume ratio, and Snapshot copies ratio. You can select a cluster or a specific node to view the storage efficiency savings.

Note: During a takeover operation or giveback operation, the storage efficiency data may not be

fully reported. In such cases, the reported storage efficiency data of these operations is corrected after some time, depending on the number of Snapshot copies across all of the volumes in the nodes.

The refresh interval for the Health Overview panel is 15 minutes.

The Protection tab displays information about cluster-wide volumes that are missing protection relationships. Only the FlexVol volumes and FlexGroup volumes that meet the following criteria are displayed:

- The volumes are RW volumes and are online.
- The aggregate containing the volumes is online.
- The volumes have protection relationships and are not yet initialized.

You can navigate to the Volumes window to view the volumes that do not have a protection relationship.

The Protection tab also displays the top five SVMs that have the highest number of volumes that are missing protection relationships.

Displays a pictorial representation of the number and names of the nodes that are available in the cluster, and the status of the nodes that are in an HA pair . You should position the cursor over the pictorial representation of the nodes to view the status of the nodes in an HA pair .

You can view more information about all of the nodes by using the Nodes link. You can also click the pictorial representation to view the model of the nodes and the number of aggregates, storage pools, shelves, and disks that are available in the nodes. You can manage the nodes by using the Manage Nodes link. You can manage the nodes in an HA pair by using the Manage HA link.

The refresh interval for the Nodes panel is 15 minutes.

Nodes

Applications and Objects

The Applications tab displays information about the top five applications of the cluster. You can view the top five applications based on either IOPS (from low to high or from high to low) or capacity (from low to high or from high to low). You should click the specific bar chart to view more information about the application. For capacity, the total space, used space, and available space are displayed, and for IOPS, the IOPS details are displayed. You can click View details to open the Applications window of the specific application.

The Objects tab displays information about the top five active clients and files in the cluster. You can view the top five active clients and files based on IOPS or throughput.

The refresh interval for the Applications and Objects panel is one minute.

Displays the average performance metrics, read performance metrics, and write performance metrics of the cluster based on latency, IOPS, and throughput. The average performance metrics is displayed by default. You can click Read or Write to view the read performance metrics or write performance metrics, respectively. You can view the performance metrics of the cluster or a node.

If the information about cluster performance cannot be retrieved from ONTAP, you cannot view the respective graph. In such cases, Storage Manager displays the specific error message.

The refresh interval for the charts in the Performance panel is 15 seconds.

Monitoring a cluster using the dashboard

The dashboard in Storage Manager enables you to monitor the health and performance of a cluster. You can also identify hardware problems and storage configuration issues by using the dashboard.

Step 1. Click the **Dashboard** tab to view the health and performance dashboard panels.

Applications

You can use predefined application templates in Storage Manager to create new configurations that are based on existing application templates. You can then provision instances of the application in ONTAP.

You configure applications by clicking **Applications & Tiers** → **Applications**.

The following applications can be configured in Storage Manager:

Performance

General Applications

- NAS Container (Volume is exported to NFS or CIFS clients)
- General SAN Application (Set of LUNs exported to the application server)

Databases

- MongoDB (over SAN)
- Oracle (over NFS or SAN)
- Oracle (Real Application Cluster over NFS or SAN)
- Microsoft SQL Server (over SAN)

Virtual Infrastructure

Virtual Servers (with VMware, Hyper-V or XEN)

Provisioning a basic template

You can use Storage Manager to quickly provision basic templates for SQL, VMware and SAP HANA on AFA, SAN, and NAS optimized clusters.

About this task

As the cluster administrator, you can provision applications by configuring one of the basic templates provided. The example describes how to configure the **SMB SQL Server** .

- Step 1. Click **Applications & Tiers** → **Applications**.
- Step 2. In the **Basic** tab, select the **SMB SQL Server** template.
- Step 3. In the Database Details section, specify the following:
 - Database name
 - Database size
 - Log size
 - · Tempdb size
 - · Number of server cores
 - Span HA Controller Notes
- Step 4. In the SQL Server Account Details section, specify the following:
 - Optional: SQL server installation account
 - SQL server service account
 - Optional: SQL server agent service account
- Step 5. Click Provision Storage.

Result

The SMB SQL Server application is provisioned.

Adding applications to Storage Manager

You can use the Enhanced tab to add general applications, databases, and virtual servers to Storage Manager .

The following procedure describes how to add a Microsoft SQL Server instance to Storage Manager.

- Click Applications & Tiers → Applications. Step 1.
- Step 2. In the Enhanced tab, click Add.
- Step 3. Select an application type from the menu.

Note: The dropdown list includes a list of all available application types and template types.

The Add Microsoft SQL Server Instance window is displayed.

Step 4. Specify the following details:

- Database name
- Database size and the required ONTAP service level
- Number of server cores
- Log size and the required ONTAP service level
- Tempdb

Specify if the server should be provisioned for Tempdb

- Host operating system
- LUN format
- Host mapping

Step 5. Click Add Application.

Result

The Microsoft SQL Server instance is added to Storage Manager.

Application provisioning settings

When setting up a basic or enhanced template for a database, server, or virtual desktop, you must provide details to Storage Manager. After an application is provisioned, you can edit the details and specify a resizing (increased size only). This section describes the fields in each template. Only the fields that are required for provisioning or editing the settings of the specific application are displayed.

Details for Microsoft SQL Database Applications over SAN

You enter the following information to provision Microsoft SQL Database applications over SAN or edit the settings:

Database Name Mandatory: The name of the database you are

configuring; this string is used as a prefix when provisioning storage for each database.

Database Size Mandatory: The size of the database, in units of MB,

GB, TB, or PB.

ONTAP Service Level for Database Mandatory: The service level for the database.

Log Size Mandatory: The size of the database log in units of

MB, GB, TB, or PB.

ONTAP Service Level for Log Mandatory: The service level for the log.

Mandatory: The size of the tempdb database in

units of MB, GB, TB, or PB.

Temp db

Export Protocol Mandatory: The export protocol is SAN

Number of Server Cores (on the SQL server) Indicates the number of CPU cores on the

databases server in increments of 2.

Span HA Controller Nodes Specifies if storage objects should be created

across a high-availability pair of nodes.

Details for provisioning a SAP HANA database

Active SAP HANA Nodes The number of active SAP HANA nodes. The

maximum number of nodes is 16.

Memory Size per HANA Node The memory size of a single SAP HANA node.

Data Disk Size per HANA Node

The data disk size for each node.

Note: If set to 0, the memory size field above is used to calculate the size of the data area.

Details for Microsoft SQL Database Applications over SMB

You enter the following information to provision Microsoft SQL Database applications over SMB or edit the settings:

Database Name Mandatory: The name of the database you are

configuring; this string is used as a prefix when

provisioning storage for each database.

Database Size Mandatory: The size of the database, in units of MB,

GB, TB, or PB.

Database Service Level Mandatory: The service level for the database.

Number of Server Cores (on the SQL server) Indicates the number of CPU cores on the

databases server in increments of 2.

Log Size Mandatory: The size of the database log in units of

MB, GB, TB, or PB.

Log Service Level Mandatory: The service level for the log.

Provision for Tempb Mandatory: Indicates whether tempb is provisioned.

Export Protocol Mandatory: The export protocol is SMB or SAN.

SMB can be chosen only when the cluster is licensed for CIFS, which has been configured for

the SVM.

Grant Access to User Mandatory: The access level for the application.

Permission Mandatory: The permission level for the application.

Details for a SQL Server Account

You enter the following information to provide full control access to the SQL server accounts:

 $\textbf{Note:} \ \ \textbf{The installation account is granted SeSecurityPrivilege} \ .$

SQL Server Service Account Mandatory: This is an existing domain account;

specify as domain\user.

SQL Server Agent Service Account

Optional: This is this domain account if SQL server agent service is configured, specify in the format

domain\user.

Details for Oracle Database Applications

You enter the following information to provision Oracle database applications or edit the settings:

Database Name Mandatory: The name of the database you are

configuring; this string is used as a prefix when

provisioning storage for each database.

Datafile Size Mandatory: The size of the datafile, in units of MB,

GB, TB, or PB.

ONTAP Service Level for Datafile Mandatory: The service level for the datafile.

Redo Log Group Size Mandatory: The size of the redo log group, in units

of MB, GB, TB, or PB.

ONTAP Service Level for Redo Log Group Mandatory: The service level for the redo log group.

Archive Log Size Mandatory: The size of the archive log, in units of

MB, GB, TB, or PB.

ONTAP Service Level for the Archive Log Mandatory: The service level for the archive group.

The export protocol: SAN or NFS **Export Protocol**

Initiators A comma-separated list of the initiators (WWPN or

IQN) in the initiator group.

Grant Access to Host The host name to give the application access to.

Details for MongoDB Applications

You enter the following information to provision MongoDB applications or edit the settings:

Database Name Mandatory: The name of the database you are

configuring; this string is used as a prefix when

provisioning storage for each database.

Data Set Size Mandatory: The size of the datafile, in units of MB,

GB, TB, or PB.

ONTAP Service Level for Data Set Mandatory: The service level for the datafile.

Replication Factor Mandatory: The number of replications.

Mapping for Primary Host Mandatory: The name of primary host.

Mapping for Replica Host 1 Mandatory: The name of first host replica.

Mapping for Replica Host 2 Mandatory: Name of second host replica.

Details for Virtual Desktop Applications

You enter the following information to provision virtual desktop infrastructures (VDI) or edit the settings:

Average Desktop Size (used for the SAN Virtual

Desktop)

This is used to determine the thin-provisioned size of each volume in units of MB, GB, TB, or PB.

Desktop Size This is used to determine the size of the volumes

which should be provisioned in units of MB, GB, TB,

or PB.

ONTAP Service Level for Desktops Mandatory: The service level for the datafile.

Number of Desktops This number is used to determine the number of

volumes created.

Note: This is not used to provision the virtual

machines.

Select Hypervisor The hypervisor used for these volumes; the

hypervisor determines the correct datastore protocol. The options are VMware, Hyper-V, or

XenServer/KVM.

Desktop Persistence Determines if the desktop is persistent or

nonpersistent. Selecting the desktop persistence sets the default values for the volume such as Snapshot schedules and post-process deduplication policies. Inline efficiencies are

enabled by default for all volumes.

Note: These policies can be modified manually

after provisioning.

Datastore Prefix The value entered is used to generate the names of

the datastores and, if applicable, the export policy

name or share name.

Export Protocol The export protocol: SAN or NFS

Initiators A comma-separated list of the initiators (WWPN or

IQN) in the initiator group.

Grant Access to Host The host name to give the application access to.

Initiator Details

You enter the following information to set up the initiator:

Initiator Group You can select an existing group or create a new

group.

Initiator Group Name

The name of the new initiator group.

Initiators A comma-separated list of the initiators (WWPN or

IQN) in the initiator group.

The following fields apply only to SAP HANA provisioning:

Initiator OS Type The operating system type of the new initiator

group.

FCP Portset The FCP portset that the initiator group is bound to.

Host Access Configuration

You enter the following information to configure the host access to the volumes:

Volume Export Configuration Select the export policy to apply to the volumes

during creation. The options are:

 Allow All This option implies that an export rule is created which permits read-write access to any clients.

• Create Custom Policy This option allows you to specify a list of host IP addresses to receive read-write access.

Note: You can modify the volume export policy later using System Manager workflows.

This is a comma-separated list of IP addresses.

Note: For NFS-based systems, a new export policy is created using the datastore prefix and a rule is created in it to give access to the list of IP.

Application Details

Host IP Addresses

When the application is added, you can view the configuration settings in the Overview tab of the Application Details window. Other details such as NFS or CIFS Access and Permissions are displayed depending on the type of application that was set up.

Type This is the type of general application, database, or

virtual infrastructure that was created.

SVM The name of the server virtual machine that the

application was created on.

Size The total size of the volume.

Available The amount of space currently available in the

volume.

Protection The type of data protection configured.

You can expand the Components and Volumes panes for performance details about space used, IOPs, and latency.

Note: The used size displayed in the Components pane is different than the used size displayed in the CLI.

Configuration update

You can use Storage Manager to configure the administration details of storage virtual machines (SVMs).

Configuring the administration details of an SVM

You can use Storage Manager to quickly configure the administration details of a storage virtual machine (SVM). You can optionally delegate the administration of the SVM to SVM administrators.

About this task

As an SVM administrator, you cannot use Storage Manager to manage delegated SVMs. You can manage the SVMs only by using the command-line interface (CLI).

- Step 1. Click Configuration → Configuration Updates .
- Step 2. In the SVMs tab, select the node, and then click **Configure Administration Details** .
- Step 3. In the Administrator Details section, set up a password for the vsadmin user account.
- Step 4. If you want a dedicated LIF for SVM management, select **Create a LIF for SVM management**, and then specify the network details.

 A dedicated SVM management LIF is required for SAN protocols, where data and management protocols cannot share the same LIF. SVM management LIFs can be created only on data ports.
- Step 5. Specify the network details:

If you want to	Then
Specify the IP address by using a subnet	Select Using a subnet .
	In the Add Details dialog box, select the subnet from which the IP address must be assigned.
	For intercluster LIFs, only the subnets that are associated with the selected IPspace are displayed.
	 If you want to assign a specific IP address to the interface, select Use a specific IP address, and then type the IP address.
	The IP address that you specify is added to the subnet if that IP address is not already present in the subnet range.
	4. Click OK .
Specify the IP address manually without using	Select Without a subnet .
a subnet	In the Add Details dialog box, perform the following steps:
	Specify the IP address and network mask or prefix.
	b. Optional: Specify the gateway.
	The destination field is populated with the default value based on the family of the IP address.
	c. If you do not want the default value, specify a new destination value.
	If a route does not exist, a new route is automatically created based on the gateway and destination.
	3. Click OK .

Step 6. Specify a port to create a data LIF:

- a. Click Browse.
- b. In the Select Network Port or Adapter dialog box, select a port, and then click **OK**.

Configuration Updates window

You can use the Configuration Updates window to update the configuration details of the cluster, storage virtual machine (SVM), and nodes.

Tabs	
Nodes	Enables you to configure details of the node.
SVMs	Enables you to configure details of the SVM.

Nodes tab

Command buttons

Edit Node Name Opens the Edit Node Name dialog box, which

enables you to modify the name of the node.

Create Node-management LIF Opens the Create Node-management LIF dialog

box, which enables you to create a nodemanagement LIF for managing a specific node.

Edit AutoSupport Opens the Edit AutoSupport Settings dialog box,

which enables you to specify an email address from which email notifications are sent and to add multiple email addresses of the host names.

SVMs tab

Command button

Configure Administration Details Opens the Configure Administration Details dialog

box, which enables you configure the administration

details of the SVM.

Service Processors

You can use a Services Processor to monitor and manage your storage system parameters such as temperature, voltage, current, and fan speeds through Storage Manager.

Assigning IP addresses to Service Processors

You can use Storage Manager to assign IP addresses to all of your Service Processors at the same time and to use these Service Processors to monitor and manage various system parameters of your storage systems.

- Step 1. Click Configuration → Configuration Updates .
- Step 2. In the Service Processor window, click Global Settings.
- Step 3. In the Global Settings dialog box, choose the source for assigning the IP addresses:

If you want to	Select the option
Assign IP addresses automatically from a DHCP server	DHCP
Assign IP addresses from a subnet	Subnet
Manually provide IP addresses	Manual Assignment

Step 4. Click Save.

Editing Service Processor settings

You can modify Service Processor attributes such as the IP address, the network mask or the prefix length, and the gateway address by using Storage Manager . You can also allocate IP addresses to Service Processors that do not have any IP addresses assigned.

About this task

- You can edit the settings of a Service Processor that was assigned IP addresses manually.
- You cannot edit the settings of a Service Processor that was assigned IP addresses through a DHCP server or through a subnet.
- Click Configuration → Service Processor.
- Step 2. In the Service Processor window, select the Service Processor that you want to modify, and then click Edit.
- In the Edit Service Processor dialog box, make the required changes, and then click Save and Step 3. Close.

Understanding the Service Processor

A Service Processor is a system-independent resource in the storage system that helps you to monitor and manage storage system parameters such as temperature, voltage, current, and fan speeds.

When the Service Processor detects an abnormal condition in any of the storage system parameters, the Service Processor logs an event, notifies ONTAP about the issue, and generates AutoSupport messages through email or through SNMP traps.

The Service Processor monitors ONTAP through a watchdog mechanism and can facilitate a quick failover to the partner node. The Service Processor also tracks numerous system events and saves the events in a log file. The events include boot progress, field-replaceable unit (FRU) changes, ONTAP generated events, and user transaction history.

The Service Processor can remotely log in and administer the storage system and can diagnose, shut down, power cycle, or reboot the system, regardless of the state of the storage system. In addition, the Service Processor provides remote diagnostic features.

The combined monitoring and managing capabilities of the Service Processor enables you to evaluate the storage system in the event of an issue, and then immediately perform effective service actions.

Service Processors window

You can use the Service Processors window to view and modify Service Processors attributes, such as the IP address, network mask (IPv4) or prefix-length (IPv6), and gateway, and to configure the IP source for a Service Processor.

- "Command buttons" on page 68
- "Service processors list" on page 69
- " Details area " on page 69

Command buttons

Edit	Opens the Edit Service Processor dialog box, which enables you to modify the IP address, network mask (IPv4) or prefix-length (IPv6), and gateway information of a Service Processor.
Global Settings	Opens the Global Settings dialog box, which allows you to configure the source of IP address for all your Service Processors as one of the following: DHCP, subnet, or manual.
Refresh	Updates the information in the window.

Service processors list

Node Specifies the node on which the Service Processor

is located.

IP Address Specifies the IP addresses of the Service

Processor.

Status Specifies the status the Service Processor, which

can be online, offline, daemon offline, node offline,

degraded, rebooted, or unknown.

MAC Address Specifies the MAC address of the Service

Processor.

Details area

The area below the Service Processor list displays detailed information about the Service Processor, including network details, such as the IP address, network mask (IPv4) or prefix-length (IPv6), gateway, IP source, and MAC address, as well as general details, such as the firmware version and whether automatic update of the firmware is enabled.

Cluster peers

Peered clusters are required for data replication using SnapMirror technology and SnapVault technology, and for data replication using SyncMirror technology in MetroCluster configurations. You can use Storage Manager to peer two clusters so that the peered clusters can coordinate and share resources between them.

Modifying the cluster peer passphrase

For security reasons, you can modify the passphrase that is provided during cluster peer creation by using Storage Manager.

- Step 1. Click Configuration → Cluster Peers.
- Step 2. Select the peered cluster, and click **Modify Passphrase**.
- Step 3. In the Modify Passphrase dialog box, enter a new passphrase, and then click **Modify**.

Note: The minimum required length of the passphrase is eight characters.

Step 4. Log in to the remote cluster, and perform steps 1 through 3 to modify the passphrase in the remote

The authentication status for the local cluster is displayed as **ok_and_offer** until you modify the passphrase in the remote cluster.

Modifying the peer network parameters

You can use Storage Manager to modify the IPspace and intercluster logical interfaces (LIFs) that are configured for the remote cluster. You can add new intercluster IP addresses or remove existing IP addresses.

Before you begin

You must have at least one intercluster IP address to create the cluster peer relationship.

- Step 1. Click Configuration → Configuration Updates .
- Step 2. In the Cluster Details pane, click Cluster Peers.
- Step 3. Select a peer cluster, and then click **Modify Peer Network Parameters** .

- Step 4. In the Modify Peer Network Parameters dialog box, select the IPspace, and then add or remove the intercluster IP addresses.
 - You can add multiple IP addresses by using comma separators.
- Step 5. Click Modify.
- Verify the changes that you made in the Peers window. Step 6.

Deleting cluster peer relationships

You can use Storage Manager to delete a cluster peer relationship if the relationship is no longer required. You must delete the cluster peering relationship from each of the clusters in the peer relationship.

- Click Configuration → Cluster Peers .
- Step 2. Select the cluster peer that you want to delete, and then click **Delete**.
- Step 3. Select the confirmation check box, and then click **Delete**.
- Step 4. Log in to the remote cluster, and perform steps 1 through 3 to delete the peer relationship between the local cluster and the remote cluster.

The status of the peer relationship is displayed as "unhealthy" until the relationship is deleted from both the local cluster and the remote cluster.

Peers window

You can use the Peers window to manage peer relationships, which enable you to move data from one cluster to another.

Command buttons

Create	Opens the Create Cluster Peering dialog box, which

enables you to create a relationship with a remote

cluster.

Local Cluster Passphrase Opens the Local Cluster Passphrase dialog box,

which enables you to enter a new passphrase for

the local cluster.

Peer Cluster Network Parameters Opens the Peer Cluster Network Parameters dialog

> box, which enables you to modify the IPspace, add new intercluster IP addresses, or remove existing IP

addresses.

You can add multiple IP addresses, separated by

commas.

Delete Opens the Delete Cluster Peer Relationship dialog

box, which enables you to delete the selected peer

cluster relationship.

Refresh Updates the information in the window.

Manage SVM Permissions Enables SVMs to automatically accept SVM peering

requests.

Generate Peering Passphrase Enables you to generate a passphrase for cluster

peering.

Peer cluster list

Peer Cluster Specifies the name of the peer cluster in the

relationship.

Availability Specifies whether the peer cluster is available for

communication.

Authentication Status Specifies whether the peer cluster is authenticated

or not.

Local Cluster IPspace Displays IPspace associated to the cluster peer

relation.

Last Updated Time Displays the time at which peer cluster was last

modified.

Details area

The details area displays detailed information about the selected peer cluster relationship, including the active IP addresses discovered by the system to set up the intercluster network and the last updated time.

High availability

You can use Storage Manager to create high availability (HA) pairs that provide hardware redundancy that is required for nondisruptive operations and fault tolerance.

High Availability window

The High Availability window provides a pictorial representation of the high-availability (HA) state, interconnect status, and takeover or giveback status of all of the HA pairs in ONTAP. You can also manually initiate a takeover operation or giveback operation by using the High Availability window.

You can view details such as the takeover or giveback status and the interconnect status by clicking the HA pair image.

The color indicates the HA pair status:

 Green: Indicates that the HA pair and the interconnect are optimally configured and available for takeover or giveback.

Green also indicates the takeover in progress state, giveback in progress state, and waiting for giveback state.

- Red: Indicates a downgraded state such as a takeover failure.
- · Yellow: Indicates that the interconnect status is down.

When multiple HA pairs in a cluster are simultaneously involved in storage failover operations, the cluster status that is displayed is based on the status and severity of the HA pair. The following order of severity is considered while displaying the cluster status: takeover in progress, giveback in progress, waiting for giveback.

Actions

You can perform tasks such as takeover or giveback based on the status of the nodes in the HA pair.

Takeover node name

Enables you to perform a takeover operation when maintenance is required on the partner node.

Giveback node name

Enables you to perform a giveback operation when the partner node that has been taken over is waiting for giveback or is in a partial giveback state.

Enable or Disable automatic giveback

Enables or disables the automatic giveback operation.

Note: Automatic giveback is enabled by default.

Command buttons

Refresh Updates the information in the window.

> **Note:** The information that is displayed in the High Availability window is automatically refreshed every 60 seconds.

Licenses

You can use Storage Manager to view, manage, or delete any software licenses installed on a cluster or node.

Deleting licenses

You can use the Licenses window in Storage Manager to delete any software license that is installed on a cluster or a node.

Before you begin

The software license that you want to delete must not be used by any service or feature.

- Click Configuration → Licenses . Step 1.
- Step 2. In the Licenses window, perform the appropriate action:

If you want to	Do this
Delete a specific license package on a node or a master license	Click the Details tab .
Delete a specific license package across all of the nodes in the cluster	Click the Packages tab .

- Step 3. Select the software license package that you want to delete, and then click **Delete**. You can delete only one license package at a time.
- Step 4. Select the confirmation check box, and then click **Delete**.

Result

The software license is deleted from your storage system. The deleted license is also removed from the list of licenses in the Licenses window.

License types and entitlement risk

Understanding the various license types and the associated entitlement risk helps you manage the risk that is associated with the licenses in a cluster.

License types

A package can have one or more of the following types of licenses installed in the cluster:

Node-locked license or standard license

A node-locked license is issued for a node with a specific system serial number (also known as a *controller serial number*). This license is valid only for the node that has the matching serial number.

Installing a node-locked license entitles a node to the licensed functionality. For the cluster to use the licensed functionality, at least one node must be licensed for the functionality. It might be out of compliance to use the licensed functionality on a node that does not have an entitlement for the functionality.

ONTAP 9.4 and later releases treat a license that was installed prior to Data ONTAP 8.2 as a standard license. Therefore, in ONTAP 8.2 and later releases, all of the nodes in the cluster automatically have the standard license for the package that the previously licensed functionality is part of.

Master or site license

A master or site license is not tied to a specific system serial number. When you install a site license, all of the nodes in the cluster are entitled to the licensed functionality.

If your cluster has a master license and you remove a node from the cluster, the node does not carry the site license with it, and it is no longer entitled to the licensed functionality. If you add a node to a cluster that has a master license, the node is automatically entitled to the functionality that is granted by the site license.

Demo or temporary license

A demo or temporary license expires after a certain period of time. This license enables you to try certain software functionality without purchasing an entitlement. A temporary license is a cluster-wide license, and is not tied to a specific serial number of a node.

If your cluster has a temporary license for a package and you remove a node from the cluster, the node does not carry the evaluation license with it.

Capacity license (ONTAP Select and FabricPool only)

An ONTAP Select instance is licensed according to the amount of data that the user wants to manage. For example, the user may buy a 10 TB capacity license to enable ONTAP Select to manage up to 10 TB of data. If more storage capacity is attached to the system than ONTAP Select is licensed to manage, ONTAP Select will not operate. By default, the maximum storage capacity that can be attached to an ONTAP Select instance is 2 TB until a capacity license (for example, a 5 TB capacity license, a 10 TB capacity license, and so on) is purchased and installed.

Starting with ONTAP 9.4, FabricPool requires a capacity license to be used with a third-party storage tier (for example, AWS). The FabricPool capacity license defines the amount of data that can be stored in the external tiered storage.

Entitlement risk

An entitlement risk arises because of the non-uniform installation of a node-locked license. If the node-locked license is installed on all the nodes, there is no entitlement risk.

The entitlement risk level can be high risk, medium risk, no risk, or unknown risk depending on certain conditions:

- High risk
 - If there is usage on a particular node, but the node-locked license is not installed on that node
 - If the demo license that was installed on the cluster expires, and there is usage on any node

Note: If a master license is installed on a cluster, the entitlement risk is never high.

- Medium risk
 - If there is usage on the nodes, and only the site license is installed on the cluster
 - If there is usage on the nodes, but the node-locked license is not installed on these nodes
 - If the site license is not installed, and the node-locked license is non-uniformly installed on the nodes in a cluster
- No risk

There is no entitlement risk if a node-locked license is installed on all the nodes, irrespective of the usage.

Unknown

The risk is unknown if the API is sometimes unable to retrieve the data related to entitlement risk that is associated with the cluster or the nodes in the cluster.

Licenses window

Your storage system arrives from the factory with preinstalled software. If you want to add or remove a software license after you receive the storage system, you can use the Licenses window.

Note: Storage Manager does not monitor evaluation licenses and does not provide any warning when an evaluation license is nearing expiry. An evaluation license is a temporary license that expires after a certain period of time.

- "Command buttons" on page 74
- "Packages tab" on page 74
- "License Package details area" on page 75
- " Details tab " on page 75

Command buttons

Add	Opens the Add License window, which enables you to add new software licenses.
Delete	Deletes the software license that you select from the software license list.
Refresh	Updates the information in the window.

Packages tab

Displays information about the license packages that are installed on your storage system.

Package	Displays the name of the license package.
Entitlement Risk	Indicates the level of risk as a result of license entitlement issues for a cluster. The entitlement risk level can be high risk (), medium risk (), no risk (), unknown (), or unlicensed (-).
Description	Displays the level of risk as a result of license entitlement issues for a cluster.

License Package details area

The area below the license packages list displays additional information about the selected license package. This area includes information about the cluster or node on which the license is installed, the serial number of the license, usage in the previous week, whether the license is installed, the expiration date of the license, and whether the license is a legacy one.

Details tab

Displays additional information about the license packages that are installed on your storage system.

Package

Displays the name of the license package.

Displays the cluster or node on which the license package is installed.

Serial Number

Displays the serial number of the license package that is installed on the cluster or node.

Type

Displays the type of the license package, which can be the following:

• Temporary: Specifies that the license is a

- temporary: Specifies that the license is a temporary license, which is valid only during the demonstration period.
- Master: Specifies that the license is a master license, which is installed on all the nodes in the cluster.
- Node Locked: Specifies that the license is a node-locked license, which is installed on a single node in the cluster.
- Capacity:
 - For ONTAP Select, specifies that the license is a capacity license, which defines the total amount of data capacity that the instance is licensed to manage.
 - For FabricPool, specifies that the license is a capacity license, which defines the amount of data that can be managed in the attached third-party storage (for example, AWS).

Displays the state of the license package, which can be the following:

- Evaluation: Specifies that the installed license is an evaluation license.
- Installed: Specifies that the installed license is a valid purchased license.
- Warning: Specifies that the installed license is a valid purchased license and is approaching maximum capacity.
- Enforcement: Specifies that the installed license is a valid purchased license and has exceeded the expiry date.

State

	 Waiting for License: Specifies that the license has not yet been installed.
Legacy	Displays whether the license is a legacy license.
Maximum Capacity	 For ONTAP Select, displays the maximum amount of storage that can be attached to the ONTAP Select instance.
	 For FabricPool, displays the maximum amount of third-party object store storage that can be used as external tiered storage.
Current Capacity	 For ONTAP Select, displays the total amount of storage that is currently attached to the ONTAP Select instance.
	 For FabricPool, displays the total amount of third-party object store storage that is currently used as external tiered storage.
Expiration Date	Displays the expiration date of the software license package.

Cluster Expansion

You can use Storage Manager to increase the size and capabilities of your storage by adding compatible nodes to the cluster and configuring the node network details. You can also view the summary of the nodes.

When you log in to Storage Manager, Storage Manager automatically detects compatible nodes that have been cabled but have not been added to the cluster and prompts you to add the nodes. You can add compatible nodes as and when Storage Manager detects the nodes or you can manually add the nodes at a later time.

Adding nodes to a cluster

You can use Storage Manager to increase the size and capabilities of your storage system by adding nodes to an existing cluster.

Before you begin

- New compatible nodes must be cabled to the cluster.
 - Only the ports that are in the default broadcast domain will be listed in the Network window.
- All of the nodes in the cluster must be up and running.
- All of the nodes must be of the same version.

Step 1. Add the new compatible nodes to the cluster:

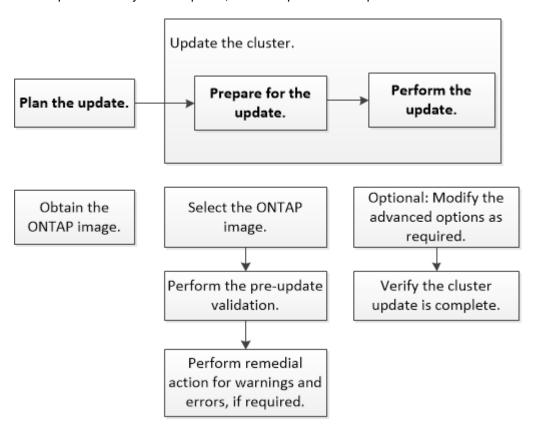
If you are	Do this
Not logged in to Storage Manager	Log in to Storage Manager .
	Note: The new compatible nodes are automatically detected by Storage Manager at login. Storage Manager prompts you to add the new compatible nodes to the cluster.
	2. Click Add Nodes to Cluster .
	3. Modify the name of the nodes.
	4. Specify the node licenses.
	5. Click Submit and Proceed .
Logged in to Storage Manager	 Click Configurations → Cluster Expansion .
	Storage Manager searches for newly added nodes. If any warnings are displayed, you must fix them before proceeding. If new compatible nodes are discovered, proceed to the next step.
	2. Modify the name of the nodes.
	3. Specify the node licenses.
	4. Click Submit and Proceed .

Configuring the network details of the nodes

You can use Storage Manager to configure the node management LIF and Service Processor settings for the newly added nodes.

Before you begin

- Sufficient number of ports must be present in the default IPspace for LIF creation.
- All the ports must be up and running.
- Step 1. Configure node management:
 - 1. Enter the IP address in the IP Address field.
 - 2. Select the port for node management in the **Port** field.
 - 3. Enter the netmask and gateway details.
- Step 2. Configure Service Processor settings:
 - 1. Select the **Override defaults** check box to override the default values.
 - 2. Enter the IP address, netmask, and gateway details.
- Step 3. Click **Submit and Proceed** to complete the network configuration of the nodes.
- Step 4. Verify the details of the nodes in the Summary page.


After you finish

• If your cluster is protected, you should create the required number of intercluster LIFs in the newly added nodes to avoid partial peering and unhealthy protection.

If SAN data protocols are enabled in your cluster, you should create the required number of SAN Data LIFs for serving data.

Updating clusters

You can use Storage Manager to update a cluster or the individual nodes in an high-availability (HA) pair. To perform an update, you should select an ONTAP image, validate that your cluster or the individual nodes in the HA pair are ready for the update, and then perform the update.

Obtaining ONTAP software images

Using ONTAP 9.4 and later, you can copy the ONTAP software image from the Lenovo Data Center Support site to a local folder. This only applies to ONTAP 9.4 patch updates. For upgrades from ONTAP 9.3 or earlier, you must copy the ONTAP software image to an HTTP or FTP server on your network.

About this task

To upgrade the cluster to the target release of ONTAP, you require access to software images. Software images, firmware version information, and the latest firmware for your platform model are available on the Lenovo Data Center Support site. You should note the following important information:

- Software images are specific to platform models.
 - You must obtain the correct image for your cluster.
- Software images include the latest version of system firmware that was available when a given version of ONTAP was released.
- Locate the target ONTAP software in the Software Downloads area of the Lenovo Data Center Step 1. Support site.

Step 2. Copy the software image (for example, lnvgy_fw_storage_94P1_anyos_noarch.tgz) from the Lenovo Data Center Support site to the directory on the HTTP or FTP server from which the image will be served, or for ONTAP 9.4 patch updates, to a local folder.

Updating a cluster nondisruptively

You can use Storage Manager to update a cluster or individual nodes in high-availability (HA) pairs without disrupting access to client data.

Before you begin

- All of the nodes must be in HA pairs.
- All of the nodes must be healthy.
- You must have copied the software image from the Lenovo Data Center Support site to your local workstation, or an HTTP server or FTP server on your network, so that the nodes can access the image.
 - "Obtaining Data ONTAP software images" on page 78

About this task

• If you try to perform other tasks from Storage Manager while updating the node that hosts the cluster management LIF, an error message might be displayed.

You must wait for the update to finish before performing any operations.

- A rolling update is performed for clusters with fewer than eight nodes, and a batch update is performed for clusters with more than eight nodes.
 - In a rolling update, the nodes in the cluster are updated one at a time. In a batch update, multiple nodes are updated in parallel.
- You can nondisruptively update ONTAP software from one long-term service (LTS) release to the next LTS release (LTS+1).

For example, if ONTAP 9.1 and ONTAP 9.3 are LTS releases, you can nondisruptively update your cluster from ONTAP 9.1 to ONTAP 9.3.

- Step 1. Click Configuration → Cluster Update.
- Step 2. In the Cluster Update tab, add a new image or select an available image.

If you want to	Then
Add a new software image from the local client	Click Add from Local Client . Search for the software image, and then click Open .
Add a new software image from the Lenovo Data Center Support site	 Click Add from Server . In the Add a New Software Image dialog box, enter the URL of the HTTP server or FTP server on which you have saved the image that was downloaded from the Lenovo Data Center Support site . For anonymous FTP, you must specify the URL in the ftp://anonymous@ftpserver format. Click Add .
Select an available image	Choose one of the listed images.

Step 3. Click Validate to run the pre-update validation checks to verify whether the cluster is ready for an update.

The validation operation checks the cluster components to validate that the update can be completed nondisruptively, and then displays any errors or warnings. It also displays any required remedial action that you must perform before updating the software.

Important: You must perform all of the required remedial actions for the errors before proceeding with the update. Although you can ignore the remedial actions for the warnings, the best practice is to perform all of the remedial actions before proceeding with the update.

- Step 4. Click Next.
- Step 5. Click Update.

Validation is performed again.

- When the validation is complete, a table displays any errors and warnings, along with any required remedial actions to be taken before proceeding.
- If the validation is completed with warnings, you can choose to select the Continue update with warnings checkbox, and then click Continue.

When the validation is complete and the update is in progress, the update might be paused because of errors. You can click the error message to view the details, and then perform the remedial actions before resuming the update.

After the update is completed successfully, the node reboots, and you are redirected to the Storage Manager login page. If the node takes a long time to reboot, you must refresh your

Step 6. Log in to Storage Manager and verify that the cluster is successfully updated to the selected version by clicking Cluster → Cluster Update → Update History, and then viewing the details.

How to update a cluster nondisruptively

You can use Storage Manager to update a cluster nondisruptively to a specific ONTAP version. In a nondisruptive update, you have to select an ONTAP image, validate that your cluster is ready for the update, and then perform the update.

During a nondisruptive update, the cluster remains online and continues to serve data.

Planning and preparing for the update

As part of planning and preparing for the cluster update, you have to obtain the version of the ONTAP image to which you want to update the cluster from the Lenovo Data Center Support site, select the software image, and then perform a validation. The pre-update validation verifies whether the cluster is ready for an update to the selected version.

If the validation finishes with errors and warnings, you have to resolve the errors and warnings by performing the required remedial actions, and then verify that the cluster components are ready for the update. For example, during the pre-update validation, if a warning is displayed that offline aggregates are present in the cluster, you must navigate to the aggregate page, and then change the status of all of the offline aggregates to online.

Performing an update

When you update the cluster, either the entire cluster is updated or the nodes in a high-availability (HA) pair are updated. As part of the update, the pre-update validation is run again to verify that the cluster is ready for the update.

A rolling update or batch update is performed, depending on the number of nodes in the cluster.

Rolling update One of the nodes is taken offline and is updated

while the partner node takes over the storage of that

node.

A rolling update is performed for a cluster that consists of two or more nodes. This is the only update method for clusters with less than eight

nodes.

Batch update The cluster is separated into two batches, each of

which contains multiple HA pairs.

A batch update is performed for a cluster that consists of eight or more nodes. In such clusters, you can perform either a batch update or a rolling update. This is the default update method for

clusters with eight or more nodes.

Cluster Update window

You can use the Cluster Update window to perform an automated cluster update nondisruptively.

- "Tabs " on page 81
- "Cluster Update tab" on page 82
- "Update History tab" on page 82

Tabs

Cluster Update Enables you to perform an automated cluster

update nondisruptively.

Update History Displays the details of previous cluster updates.

Cluster Update tab

The Cluster Update tab enables you perform an automated cluster update nondisruptively.

Command buttons

Refresh

Updates the information in the window.

Select

You can select the version of the software image for the update.

- Cluster Version Details: Displays the current cluster version in use and the version details of the nodes or high-availability (HA) pairs.
- Available Software Images: Enables you to select an existing software image for the update.

Alternatively, you can download a software image from the Lenovo Data Center Support site and add the image for the update.

Validate

Update

You can view and validate the cluster against the software image version for the update. A preupdate validation checks whether the cluster is in a state that is ready for an update. If the validation is completed with errors, a table displays the status of the various components and the required corrective action for the errors.

You can perform the update only when the validation is completed successfully.

You can update all of the nodes in the cluster or an HA pair in the cluster to the selected version of the software image. While the update is in progress, you can choose to pause the update, and you can then either cancel or resume the update.

If an error occurs, the update is paused and an error message is displayed with the remedial steps. You can choose to either resume the update after performing the remedial steps or cancel the update. You can view the table with the node name, uptime, state, and ONTAP version when the update is successfully completed.

Update History tab

Displays details about the cluster update history.

Update History list

Image Version

Specifies the version of the ONTAP image to which the node will be updated.

Software Updates Installed on

Specifies the type of disk on which the updates are installed.

Status Specifies the status of the software image update

(whether the update is successful or cancelled).

Start Time Specifies the time when the update was started.

Completion Time Specifies the time when the update was completed.

This field is hidden by default.

Time Taken for the Update Specifies the time taken for the update to finish.

Previous Version Specifies the ONTAP version of the node before the

update.

Updated Version Specifies the ONTAP version of the node after the

update.

Date and time settings of a cluster

You can use Storage Manager to manage the date and time settings of a cluster.

Date and Time window

The Date and Time window enables you to view the current date and time settings for your storage system and to modify the settings when required.

Command buttons

Edit Opens the Edit Date and Time dialog box, which

enables you to edit the time servers.

Refresh Updates the information in the window.

Details area

The details area displays information about the date, time, time zone, NTP service, and time servers for your storage system.

SNMP

You can use Storage Manager to configure SNMP to monitor SVMs in your cluster.

Enabling or disabling SNMP

You can enable or disable SNMP on your clusters by using Storage Manager . SNMP enables you to monitor the storage virtual machines (SVMs) in a cluster to avoid issues before they can occur and to prevent issues from occuring.

Step 1. Click .

Step 2. In the Setup pane, click **SNMP**.

Step 3. In the SNMP window, click either **Enable** or **Disable** .

Setting SNMP information

You can use the Edit SNMP Settings dialog box in Storage Manager to update information about the storage system location and contact personnel, and to specify the SNMP communities of your system.

About this task

Storage Manager uses the SNMP protocols SNMPv1 and SNMPv2c and an SNMP community to discover storage systems.

- Click 🏪 . Step 1.
- In the Setup pane, click **SNMP**. Step 2.
- Step 3. Click Edit.
- Step 4. In the General tab, specify the contact personnel information and location information for the storage system, and the SNMP communities. The community name can be of 32 characters and must not contain the following special characters: , /: " ' |.
- Step 5. Click OK.
- Verify the changes that you made to the SNMP settings in the SNMP window . Step 6.

Enabling or disabling SNMP traps

SNMP traps enable you to monitor the health and state of the various components of your storage system. You can use the Edit SNMP Settings dialog box in Storage Manager to enable or disable SNMP traps on your storage system.

About this task

Although SNMP is enabled by default, SNMP traps are disabled by default.

- Click 🍱 . Step 1.
- Step 2. In the Setup pane, click **SNMP**.
- Step 3. In the SNMP window, click Edit.
- Step 4. In the Edit SNMP Settings dialog box, select the Trap hosts tab, and then select or clear the **Enable traps** check box to enable or disable SNMP traps, respectively.
- Step 5. If you enable SNMP traps, add the host name or IP address of the hosts to which the traps are sent.
- Click OK. Step 6.

Testing the trap host configuration

You can use Storage Manager to test whether you have configured the trap host settings correctly.

- Step 1. Click 🎏
- In the Setup pane, click **SNMP**. Step 2.
- In the SNMP window, click Test Trap Host. Step 3.
- Step 4. Click OK.

SNMP window

The SNMP window enables you to view the current SNMP settings for your system. You can also change your system's SNMP settings, enable SNMP protocols, and add trap hosts.

Command buttons

Enable/Disable Enables or disables SNMP.

Edit Opens the Edit SNMP Settings dialog box , which

enables you to specify the SNMP communities for your storage system and enable or disable traps.

Test Trap Host Sends a test trap to all the configured hosts to

check whether the test trap reaches all the hosts and whether the configurations for SNMP are set

correctly.

Refresh Updates the information in the window.

Details

The details area displays the following information about the SNMP server and host traps for your storage system:

SNMP Displays whether SNMP is enabled or not.

Traps Displays if SNMP traps are enabled or not.

Location Displays the address of the SNMP server.

Contact Displays the contact details for the SNMP server.

Trap host IP Address Displays the IP addresses of the trap host.

Community Names Displays the community name of the SNMP server.

Security Names Displays the security style for the SNMP server.

LDAP

You can use Storage Manager to configure an LDAP server that centrally maintains user information.

Viewing the LDAP client configuration

You can use Storage Manager to view the LDAP clients that are configured for a storage virtual machine (SVM) in a cluster.

Step 1. Click .

Step 2. In the Setup pane, click **LDAP**.

The list of LDAP clients are displayed in the LDAP window.

Using LDAP services

An LDAP server enables you to centrally maintain user information. If you store your user database on an LDAP server in your environment, you can configure your storage virtual machine (SVM) to look up user information in your existing LDAP database.

About this task

ONTAP supports LDAP for user authentication, file access authorization, and user lookup and mapping services between NFS and CIFS.

LDAP window

You can use the LDAP window to view LDAP clients for user authentication, file access authorization, and user search, and to map services between NFS and CIFS at the cluster level.

Command buttons

Add Opens the Create LDAP Client dialog box, which

enables you to create and configure LDAP clients.

Edit Opens the Edit LDAP Client dialog box, which

enables you to edit LDAP client configurations. You

can also edit active LDAP clients.

Delete Opens the Delete LDAP Client(s) dialog box, which

enables you to delete LDAP client configurations.

You can also delete an active LDAP client.

Refresh Updates the information in the window.

LDAP client list

Displays (in tabular format) details about LDAP clients.

LDAP Client Configuration Displays the name of the LDAP client configuration

that you specified.

Storage Virtual Machine Displays the name of the storage virtual machine

(SVM) for each LDAP client configuration.

Schema Displays the schema for each LDAP client.

Minimum Bind Level Displays the minimum bind level for each LDAP

client.

Active Directory Domain Displays the Active Directory domain for each LDAP

client configuration.

LDAP Servers Displays the LDAP server for each LDAP client

configuration.

Preferred Active Directory Servers

Displays the preferred Active Directory server for

each LDAP client configuration.

Users

You can use Storage Manager to add, edit, and manage a cluster user account, and specify a login user method to access the storage system.

Adding a cluster user account

You can use Storage Manager to add a cluster user account and to specify a user login method for accessing the storage system.

About this task

In clusters on which SAML authentication is enabled, for a particular application, you can add either SAML authentication or password-based authentication, or you can add both types of authentication.

- Step 1. Click .
- Step 2. In the Management pane, click **Users**.
- Step 3. Click Add.
- Step 4. Type a user name for the new user.
- Step 5. Type a password for the user to connect to the storage system, and then confirm the password.
- Step 6. Add one or more user login methods, and then click Add.

Editing a cluster user account

You can use Storage Manager to edit a cluster user account by modifying the user login methods for accessing the storage system.

- Step 1. Click ...
- Step 2. In the Management pane, click **Users**.
- Step 3. In the Users window, select the user account that you want to modify, and then click Edit .
- Step 4. In the Modify User dialog box, modify the user login methods, and then click **Modify**.

Changing passwords for cluster user accounts

You can use Storage Manager to reset the password for a cluster user account.

- Step 1. Click ...
- Step 2. In the Management pane, click Users.
- Step 3. Select the user account for which you want to modify the password, and then click **Change Password**.
- Step 4. In the **Change Password** dialog box, type the new password, confirm the new password, and then click **Change**.

Locking or unlocking cluster user accounts

You can use Storage Manager to lock or unlock cluster user accounts.

- Step 1. Click ...
- Step 2. In the Management pane, click Users.
- Step 3. Select the user account for which you want to modify the status, and click either **Lock** or **Unlock**.

User accounts (cluster administrators only)

You can create, modify, lock, unlock, or delete a cluster user account, reset a user's password, or display information about all user accounts.

You can manage cluster user accounts in the following ways:

- Creating a login method for a user by specifying the user's account name, the access method, the authentication method, and, optionally, the access-control role that the user is assigned
- Displaying users' login information, such as the account name, allowed access method, authentication method, access-control role, and account status
- Modifying the access-control role that is associated with a user's login method

Note: It is best to use a single role for all the access and authentication methods of a user account.

- Deleting a user's login method, such as the access method or the authentication method
- Changing the password for a user account
- Locking a user account to prevent the user from accessing the system
- Unlocking a previously locked user account to enable the user to access the system again

Roles

You can use an access-control role to control the level of access a user has to the system. In addition to using the predefined roles, you can create new access-control roles, modify them, delete them, or specify account restrictions for the users of a role.

Users window

You can use the Users window to manage user accounts, to reset the password of a user, and to view information about all of the user accounts.

Command buttons

Add Opens the Add User dialog box, which enables you

to add user accounts.

Edit Opens the Modify User dialog box, which enables

you to modify user login methods.

Note: It is a best practice to use a single role for all of the access and authentication methods of a user

account.

Delete Enables you to delete a selected user account.

Change Password Opens the Change Password dialog box, which

enables you to reset a selected user's password.

Lock Locks the user account.

Refresh Updates the information in the window.

Users list

The area below the users list displays detailed information about the selected user.

User Displays the name of the user account.

Account Locked Displays whether the user account is locked.

User Login Methods area

Application Displays the access method that a user can use to access the storage system. The supported access

methods include the following:

System console (console)

HTTP(S) (http)

ONTAP API (ontapi)

• Service Processor (service-processor)

• SSH (ssh)

Authentication Displays the default supported authentication

method, which is "password".

Role Displays the role of a selected user.

Roles

You can use Storage Manager to create access-controlled user roles.

Adding roles

You can use Storage Manager to add an access-control role and to specify the command or command directory that users of the role can access. You can also control the level of access that the role has to the command or command directory, and you can specify a query that applies to the command or command directory.

Step 1. Click .

Step 2. In the Management pane, click Roles.

Step 3. In the Roles window, click Add.

Step 4. In the Add Role dialog box, type the role name and add the role attributes.

Step 5. Click Add.

Editing roles

You can use Storage Manager to modify an access-control role's access to a command or command directory and to restrict a user's access to only a specified set of commands. You can also remove a role's access to the default command directory.

Step 1. Click ...

Step 2. In the Management pane, click Roles.

Step 3. In the Roles window, select the role that you want to modify, and then click Edit .

Step 4. In the Edit Role dialog box, modify the role attributes, and then click **Modify**.

Step 5. Verify the changes that you made in the Roles window.

Roles and permissions

The cluster administrator can restrict a user's access to only a specified set of commands by creating a restricted access-control role and then assigning the role to a user.

You can manage access-control roles in the following ways:

- By creating an access-control role, and then specifying the command or command directory that the role's users can access.
- By controlling the level of access that the role has for the command or command directory, and then specifying a query that applies to the command or command directory.
- By modifying an access-control role's access to a command or command directory.
- By displaying information about access-control roles, such as the role name, the command or command directory that a role can access, the access level, and the query.
- By deleting an access-control role.
- By restricting a user's access to only a specified set of commands.
- By displaying ONTAP APIs and their corresponding command-line interface (CLI) commands.

Roles window

You can use the Roles window to manage the roles that are associated with user accounts.

Command buttons

Add Opens the Add Role dialog box, which enables you

> to create an access-control role and specify the command or command directory that the role's

users can access.

Edit Opens the Edit Role dialog box, which enables you

to add or modify role attributes.

Refresh Updates the information in the window.

Roles list

The roles list provides a list of roles that are available to be assigned to users.

Role Attributes area

The details area displays the role attributes, such as the command or command directory that the selected role can access, the access level, and the query that applies to the command or command directory.

Chapter 9. Managing the network

You can use Storage Manager to manage the network of your storage system by creating and managing IPspaces, broadcast domains, subnets, network interfaces, Ethernet ports, and FC/FCoE adapters.

IPspaces

You can use Storage Manager to create and manage IPspaces.

Editing IPspaces

You can use Storage Manager to rename an existing IPspace.

About this task

- All IPspace names must be unique within a cluster and must not consist of names that are reserved by the system, such as local or localhost.
- The system-defined "Default" IPspace and "Cluster" IPspace cannot be modified.
- Step 1. Click **Network** → **IPspaces**.
- Step 2. Select the IPspace that you want to modify, and then click Edit .
- Step 3. In the Edit IPspace dialog box, specify a new name for the IPspace.
- Step 4. Click Rename.

Deleting IPspaces

You can use Storage Manager to delete an IPspace when you no longer require the IPspace.

Before you begin

The IPspace that you want to delete must not be associated with any broadcast domains, network interfaces, peer relationships, or storage virtual machines (SVMs).

About this task

The system-defined "Default" IPspace and "Cluster" IPspace cannot be deleted.

- Step 1. Click **Network** → **IPspaces**.
- Step 2. Select the IPspace that you want to delete, and then click **Delete**.
- Step 3. Select the confirmation check box, and then click Yes.

Broadcast domains

You can use Storage Manager to create and manage broadcast domains.

Editing broadcast domain settings

You can use Storage Manager to modify the attributes of a broadcast domain such as the name, the MTU size, and the ports that are associated with the broadcast domain.

About this task

- You must not modify the MTU size of the broadcast domain to which the management port e0M is assigned.
- You cannot use Storage Manager to edit broadcast domains in the cluster IPspace.

You must use the command-line interface (CLI) instead.

- Click Network → Broadcast Domains . Step 1.
- Step 2. Select the broadcast domain that you want to modify, and then click Edit .
- Step 3. In the Edit Broadcast Domain dialog box, modify the broadcast domain attributes as required.
- Click Save and Close. Step 4.

Deleting broadcast domains

You can delete a broadcast domain by using Storage Manager when you no longer require the broadcast domain.

Before you begin

No subnets must be associated with the broadcast domain that you want to delete.

About this task

- When you delete a broadcast domain, the ports that are associated with the broadcast domain are assigned to the default IPspace, and the MTU settings of the ports are not changed.
- You cannot use Storage Manager to delete broadcast domains that are in the cluster IPspace.

You must use the command-line interface (CLI) instead.

- Step 1. Click Network → Broadcast Domains .
- Step 2. Select the broadcast domain that you want to delete, and then click **Delete**.
- Step 3. Select the confirmation check box, and then click **Delete**.

Subnets

You can use Storage Manager to manage subnets.

Editing subnet settings

You can use Storage Manager to modify subnet attributes such as the name, subnet address, range of IP addresses, and gateway address of the subnet.

About this task

You cannot use Storage Manager to edit subnets in the cluster IPspace.

You must use the command-line interface (CLI) instead.

Modifying the gateway address does not update the route.

You must use the CLI to update the route.

- Step 1. Click Network → Subnets.
- Step 2. Select the subnet that you want to modify, and then click Edit . You can modify the subnet even when the LIF in that subnet is still in use.
- Step 3. In the Edit Subnet dialog box, modify the subnet attributes as required.

Step 4. Click Save and Close.

Deleting subnets

You can use Storage Manager to delete a subnet when you no longer require the subnet and you want to reallocate the IP addresses that were assigned to the subnet.

Before you begin

The subnet that you want to delete must not have any LIFs that are using the IP addresses from the subnet.

About this task

You cannot use Storage Manager to delete subnets in the Cluster IPspace. You must use the command-line interface (CLI) instead.

- Step 1. Click **Network** → **Subnets** .
- Step 2. Select the subnet that you want to delete, and then click **Delete**.
- Step 3. Select the confirmation check box, and then click **Delete**.

Network interfaces

You can use Storage Manager to create and manage network interfaces.

Creating network interfaces

You can use Storage Manager to create a network interface or LIF to access data from storage virtual machines (SVMs), to manage SVMs, and to provide an interface for intercluster connectivity.

Before you begin

The broadcast domain that is associated with the subnet must have allocated ports.

About this task

Dynamic DNS (DDNS) is enabled by default when a LIF is created.

However, DDNS is disabled if you configure the LIF for intercluster communication using iSCSI, NVMe and FC/FCoE protocols, or for management access only.

- You can specify an IP address by using a subnet or without using a subnet.
- You cannot use Storage Manager to create a network interface if the ports are degraded.

You must use the command-line interface (CLI) to create a network interface in such cases.

- To create NVMe-oF data LIF the SVM must already be set up, the NVMe service must already exist on the SVM and the NVMe-oF capable adapters should be available.
- NVMe protocol is enabled only if the selected SVM has the NVMe service configured.
- Step 1. Click **Network** → **Network Interfaces** .
- Step 2. Click Create.
- Step 3. In the Create Network Interface dialog box, specify an interface name.
- Step 4. Specify an interface role:

If you want to	Then
Associate the network interface with a data LIF	 Select Serves Data . Select the SVM for the network interface.
Associate the network interface with an intercluster LIF	Select Intercluster Connectivity . Select the IPspace for the network interface.

Step 5. Select the appropriate protocols.

The interface uses the selected protocols to access data from the SVM.

Note: If you select the NVMe protocol, the rest of the protocols are disabled. If NAS (CIFS and NFS) protocols are supported then they remain available. The NVMe transports field is displayed when you select the NVMe protocol and FC-NVMe is shown as the transport protocol.

Step 6. If you want to enable management access on the data LIF, select the **Enable Management** Access check box.

You cannot enable management access for intercluster LIFs or LIFs with FC/FCoE, NVMe or iSCSI protocols.

Step 7. Assign the IP address:

If you want to	Then
Specify the IP address by using a subnet	Select Using a subnet .
	In the Add Details dialog box, select the subnet from which the IP address must be assigned.
	For intercluster LIF, only the subnets that are associated with the selected IPspace are displayed.
	If you want to assign a specific IP address to the interface, select Use a specific IP address, and then type the IP address.
	The IP address that you specify is added to the subnet if the IP address is not already present in the subnet range.
	4. Click OK .
Specify the IP address manually without using a subnet	Select Without a subnet .
	In the Add Details dialog box, perform the following steps:
	 a. Specify the IP address and the network mask or prefix.
	b. Optional: Specify the gateway.
	 c. If you do not want to use the default value for the Destination field, specify a new destination value.
	If you do not specify a destination value, the Destination field is populated with the default value based on the family of the IP address.
	If a route does not exist, a new route is automatically created based on the gateway and destination.
	3. Click OK .

Step 8. Select the required ports from the Port details area.

- For data LIFs, the details area displays all of the ports from the broadcast domain that is associated with the IPspace of the SVM .
- For intercluster LIFs, the details area displays all of the ports from the broadcast domain that is associated with the required IPspace.
- The Port details area will display only NVMe capable adapters if the NVMe protocol is selected.
- Step 9. Optional: Select the **Dynamic DNS (DDNS)** check box to enable DDNS.
- Step 10. Click Create.

Editing network interface settings

You can use Storage Manager to modify the network interface to enable management access for a data LIF.

About this task

- You cannot modify the network settings of cluster LIFs, cluster management LIFs, or node management LIFs through Storage Manager.
- You cannot enable management access for an intercluster LIF.
- Click Network → Network Interfaces .
- Step 2. Select the interface that you want to modify, and then click Edit.
- In the Edit Network Interface dialog box, modify the network interface settings as required. Step 3.
- Step 4. Click Save and Close.

Deleting network interfaces

You can use Storage Manager to delete a network interface to free the IP address of the interface and then use the IP address for a different purpose.

Before you begin

The status of the network interface must be disabled.

- Step 1. Click Network → Network Interfaces .
- Step 2. Select the interface that you want to delete, and then click **Delete**.
- Step 3. Select the confirmation check box, and then click **Delete**.

Migrating a LIF

You can use Storage Manager to migrate a data LIF or a cluster management LIF to a different port on the same node or on a different node within the cluster if the source port is faulty or requires maintenance.

Before you begin

The destination node and ports must be operational and must be able to access the same network as the source port.

About this task

- If you are removing the NIC from the node, you must migrate the LIFs that are hosted on the ports belonging to the NIC to other ports in the cluster.
- · You cannot migrate iSCSI LIFs or FC LIFs.
- Click Network → Network Interfaces . Step 1.
- Step 2. Select the interface that you want to migrate, and then click Migrate.
- In the Migrate Interface dialog box, select the destination port to which you want to migrate the Step 3.
- Optional: Select the Migrate Permanently check box if you want to set the destination port as the Step 4. new home port for the LIF.
- Step 5. Click Migrate.

Ethernet ports

You can use Storage Manager to create and manage Ethernet ports.

Creating interface groups

You can use Storage Manager to create an interface group—single-mode, static multimode, or dynamic multimode (LACP)—to present a single interface to clients by combining the capabilities of the aggregated network ports.

Before you begin

Free ports must be available that do not belong to any broadcast domain or interface group, or that host a VLAN.

- Step 1. Click **Network** → **Ethernet Ports**.
- Step 2. Click Create Interface Group.
- Step 3. In the Create Interface Group dialog box, specify the following settings:
 - Name of the interface group
 - Node
 - Ports that you want to include in the interface group
 - Usage mode of the ports: single-mode, static multiple, or dynamic multimode (LACP)
 - · Network load distribution: IP-based, MAC address-based, sequential, or port
 - · Broadcast domain for the interface group, if required
- Step 4. Click Create.

Creating VLAN interfaces

You can create a VLAN to maintain separate broadcast domains within the same network domain by using Storage Manager.

- Step 1. Click **Network** → **Ethernet Ports**.
- Step 2. Click Create VLAN.
- Step 3. In the Create VLAN dialog box, select the node, the physical interface, and the broadcast domain (if required).

The physical interface list includes only Ethernet ports and interface groups. The list does not display interfaces that are in another interface group or an existing VLAN.

- Step 4. Type a VLAN tag, and then click **Add** . You must add unique VLAN tags.
- Step 5. Click Create.

Editing Ethernet port settings

You can edit Ethernet port settings such as the duplex mode and speed settings by using Storage Manager.

- Step 1. Click **Network** → **Ethernet Ports**.
- Step 2. Select the physical port, and then click Edit.
- Step 3. In the Edit Ethernet Port dialog box, modify the duplex mode and speed settings to either manual or automatic .
- Step 4. Click Edit.

Editing interface group settings

You can use Storage Manager to add ports to an interface group, to remove ports from an interface group. and to modify the usage mode and load distribution pattern of the ports in an interface group.

About this task

You cannot modify the MTU settings of an interface group that is assigned to a broadcast domain.

- Step 1. Click Network → Ethernet Ports .
- Select an interface group, and then click Edit. Step 2.
- Step 3. Modify the interface group settings as required, and then click Save and Close.

Modifying the MTU size of a VLAN

If you want to modify the MTU size of a VLAN interface that is not part of a broadcast domain, you can use Storage Manager to change the size.

About this task

You must not modify the MTU size of the management port e0M.

- Step 1. Click Network → Ethernet Ports .
- Select the VLAN that you want to modify, and then click Edit . Step 2.
- Step 3. In the Edit VLAN dialog box, modify the MTU size as required, and then click Save .

Deleting VLANs

You can delete VLANs that are configured on network ports by using Storage Manager . You might have to delete a VLAN before removing a NIC from its slot. When you delete a VLAN, the VLAN is automatically removed from all of the failover rules and groups that use the VLAN.

Before you begin

No LIFs must be associated with the VLAN.

- Click Network → Ethernet Ports . Step 1.
- Step 2. Select the VLAN that you want to delete, and then click **Delete**.
- Select the confirmation check box, and then click **Delete**. Step 3.

Ports and adapters

Ports are grouped under nodes and the nodes are displayed based on the selected protocol category. For example, if the data is served using the FC protocol, then only the nodes with FCP adapters are displayed. The hosted interface count helps you in choosing a port which is less loaded.

FC/FCoE and NVMe adapters

You can use Storage Manager to manage FC/FCoE and NVMe adapters.

Editing the FC/FCoE and NVMe adapter speed settings

You can modify the FC/FCoE and NVMe adapter speed settings by using the Edit FC/FCoE and NVMe Adapter Settings dialog box in Storage Manager.

- Step 1. Click Network → FC/FCoE and NVMe Adapters
- Step 2. Select the adapter that you want to edit, and then click **Edit** .
- Step 3. In the Edit FC/FCoE and NVMe adapter settings dialog box, set the adapter speed to **Manual** or **Automatic**, and then click **Edit**.

Network window

You can use the Network window to view the list of network components, such as subnets, network interfaces, Ethernet ports, broadcast domains, FC/FCoE and NVMe adapters, and IPspaces, and to create, edit, or delete these components in your storage system.

- "Tabs" on page 99
- "Subnet tab" on page 100
- "Limitations of the Network Interfaces tab" on page 100
- "Ethernet Ports tab" on page 102
- "Broadcast Domain tab" on page 103
- "FC/FCoE and NVMe Adapters tab" on page 104
- "IPspaces tab" on page 105

Tabs

Subnet	Enables you to view a list of subnets, and create, edit, or delete subnets from your storage system.
Network Interfaces	Enables you to view a list of network interfaces, create, edit, or delete interfaces from your storage system, migrate the LIFs, change the status of the interface, and send the interface back to the home port.
Ethernet Ports	Enables you to view and edit the ports of a cluster, and create, edit, or delete interface groups and VLAN ports.
Broadcast Domains	Enables you to view a list of broadcast domains, and create, edit, or delete domains from your storage system.
FC/FCoE and NVMe Adapters	Enables you to view the ports in a cluster, and edit the FC/FCoE and NVMe adapter settings.
IPspaces	Enables you to view a list of IPspaces and broadcast domains, and create, edit, or delete an IPspace from your storage system.

Subnet tab

Command buttons

Create Opens the Create Subnet dialog box, which enables

you to create new subnets that contain

configuration information for creating a network

interface.

Edit Opens the Edit Subnet dialog box, which enables

you to modify certain attributes of a subnet such as the name, subnet address, range of IP addresses,

and gateway details.

Delete Deletes the selected subnet.

Refresh Updates the information in the window.

Subnet list

Name Specifies the name of the subnet.

Subnet IP/Subnet mask Specifies the subnet address details.

Gateway Specifies the IP address of the gateway.

Available Specifies the number of IP addresses available in

the subnet.

Used Specifies the number of IP addresses used in the

subnet.

Total Count Specifies the total number of IP addresses

(available and used) in the subnet.

Broadcast domain Specifies the broadcast domain to which the subnet

belongs.

IPspace Specifies the IPspace to which the subnet belongs.

Details area

The area below the subnet list displays detailed information about the selected subnet, including the subnet range and a graph showing the available, used, and total number of IP addresses.

Limitations of the Network Interfaces tab

- For cluster LIFs and node management LIFs, you cannot use Storage Manager to perform the following actions:
 - Create, edit, delete, enable, or disable the LIFs
 - Migrate the LIFs or send the LIFs back to the home port
- For cluster management LIFs, you can use Storage Manager to migrate the LIFs, or send the LIFs back to the home port.

However, you cannot create, edit, delete, enable, or disable the LIFs.

- For intercluster LIFs, you can use Storage Manager to create, edit, delete, enable, or disable the LIFs.
 - However, you cannot migrate the LIFs, or send the LIFs back to the home port.
- You cannot create, edit, or delete network interfaces in the following configurations:

- A MetroCluster configuration
- SVMs configured for disaster recovery (DR).

Command buttons

Create Opens the Create Network Interface dialog box,

which enables you to create network interfaces and intercluster LIFs to serve data and manage SVMs.

Edit Opens the Edit Network Interface dialog box, which

you can use to enable management access for a

data LIF.

Delete Deletes the selected network interface.

This button is enabled only if the data LIF is

disabled.

Status Open the drop-down menu, which provides the

option to enable or disable the selected network

interface.

Migrate Enables you to migrate a data LIF or a cluster

management LIF to a different port on the same node or a different node within the cluster.

Send to Home Enables you to host the LIF back on its home port.

This command button is enabled only when the selected interface is hosted on a non-home port

and when the home port is available.

This command button is disabled when any node in

the cluster is down.

Refresh Updates the information in the window.

Interface list

You can move the pointer over the color-coded icon to view the operational status of the interface:

- Green specifies that the interface is enabled.
- Red specifies that the interface is disabled.

Interface Name Specifies the name of the network interface.

Storage Virtual Machine Specifies the SVM to which the interface belongs.

IP Address/WWPN Specifies the IP address or worldwide port name

(WWPN) of the interface.

Current Port Specifies the name of the node and port on which

the interface is hosted.

Data Protocol Access Specifies the protocol used to access data.

Management Access Specifies whether management access is enabled

on the interface.

Subnet Specifies the subnet to which the interface belongs. Role

Specifies the operational role of the interface, which can be data, intercluster, cluster, cluster management, or node management.

Details area

The area below the interface list displays detailed information about the selected interface: failover properties such as the home port, current port, speed of the ports, failover policy, failover group, and failover state, and general properties such as the administrative status, role, IPspace, broadcast domain, network mask, gateway, and DDNS status.

Ethernet Ports tab

Command buttons

Create Interface Group Opens the Create Interface Group dialog box, which enables you create interface groups by choosing the ports, and determining the use of ports and

network traffic distribution.

Create VLAN Opens the Create VLAN dialog box, which enables you to create a VLAN by choosing an Ethernet port

or an interface group, and adding VLAN tags.

Edit Opens one of the following dialog boxes:

> Edit Ethernet Port dialog box: Enables you to modify Ethernet port settings.

> Edit VLAN dialog box: Enables you to modify VLAN settings.

• Edit Interface Group dialog box: Enables you to

You can only edit VLANs that are not associated

Opens one of the following dialog boxes:

modify interface groups.

with a broadcast domain.

 Delete VLAN dialog box: Enables you to delete a VLAN.

Delete Interface Group dialog box: Enables you to delete an interface group.

Updates the information in the window.

Delete

Refresh

Ports list

You can move the pointer over the color-coded icon to view the operational status of the port:

- Green specifies that the port is enabled.
- Red specifies that the port is disabled.

Port Displays the port name of the physical port, VLAN

port, or the interface group.

Node Displays the node on which the physical interface is

located.

Broadcast Domain Displays the broadcast domain of the port.

IPspace Displays the IPspace to which the port belongs.

Type Displays the type of the interface such as interface

group, physical interface, or VLAN.

Details area

The area below the ports list displays detailed information about the port properties.

Details tab Displays administrative details and operational

details.

As part of the operational details, the tab displays the health status of the ports. The ports can be healthy or degraded. A degraded port is a port on which continuous network fluctuations occur, or a port that has no connectivity to any other ports in

the same broadcast domain.

In addition, the tab also displays the interface name, SVM details, and IP address details of the network interfaces that are hosted on the selected port. It also indicates whether the interface is at the home

port or not.

Performance tab Displays performance metrics graphs of the

ethernet ports, including error rate and throughput.

Changing the client time zone or the cluster time zone impacts the performance metrics graphs. You should refresh your browser to view the updated

graphs.

Broadcast Domain tab

Command buttons

Create Opens the Create Broadcast Domain dialog box,

which enables you to create new broadcast

domains to contain ports.

Edit Opens the Edit Broadcast Domain dialog box,

which enables you to modify the attributes of a broadcast domain, such as the name, MTU size,

and associated ports.

Delete Deletes the selected broadcast domain.

Refresh Updates the information in the window.

Broadcast domain list

Broadcast Domain Specifies the name of the broadcast domain.

MTU Specifies the MTU size.

IPspace Specifies the IPspace.

Combined Port Update Status Specifies the status of the port updates when you

create or edit a broadcast domain. Any errors in the port updates are displayed in a separate window, which you can open by clicking the associated link.

Details area

The area below the broadcast domain list displays all the ports in a broadcast domain. In a non-default IPspace, if a broadcast domain has ports with update errors, such ports are not displayed in the details area. You can move the pointer over the color-coded icon to view the operational status of the ports:

- Green specifies that the port is enabled.
- Red specifies that the port is disabled.

FC/FCoE and NVMe Adapters tab

Command buttons

Edit Opens the Edit FC/FCoE and NVMe Settings dialog

box, which enables you to modify the speed of the

adapter.

Status Enables you to bring the adapter online or take it

offline.

Refresh Updates the information in the window.

FC/FCoE and NVMe adapters list

WWNN Specifies the unique identifier of the FC/FCoE and

NVMe adapter.

Node Name Specifies the name of the node that is using the

adapter.

Slot Specifies the slot that is using the adapter.

WWPN Specifies the FC worldwide port name (WWPN) of

the adapter.

Status Specifies whether the status of the adapter is online

or offline.

Speed Specifies whether the speed settings are automatic

or manual.

Details area

The area below the FC/FCoE and NVMe adapters list displays detailed information about the selected adapters.

Details tab Displays adapter details such as the media type,

port address, data link rate, connection status, operation status, fabric status, and the speed of the

adapter.

Performance tab Displays performance metrics graphs of the FC/

FCoE and NVMe adapter, including IOPS and

response time.

Changing the client time zone or the cluster time zone impacts the performance metrics graphs. You should refresh your browser to see the updated

graphs.

IPspaces tab

Command buttons

Create Opens the Create IPspace dialog box, which

enables you to create a new IPspace.

Edit Opens the Edit IPspace dialog box, which enables

you to rename an existing IPspace.

Delete Deletes the selected IPspace.

Refresh Updates the information in the window.

IPspaces list

Name Specifies the name of the IPspace.

Broadcast Domains Specifies the broadcast domain.

Details area

The area below the IPspaces list displays the list of storage virtual machines (SVMs) in the selected IPspace.

Chapter 10. Managing physical storage

You can use Storage Manager to manage physical storage such as aggregates, storage pools, disks, array LUNs, nodes, Flash Cache, events, system alerts, AutoSupport notifications, jobs, and Flash Pool statistics.

Storage tiers

You can use Storage Manager to create aggregates to support the different security requirements, backup requirements, performance requirements, and data sharing requirements of your users.

Editing aggregates

You can use Storage Manager to change the aggregate name, RAID type, and RAID group size of an existing aggregate when required.

Before you begin

For modifying the RAID type of an aggregate from RAID4 to RAID-DP, the aggregate must contain enough compatible spare disks, excluding the hot spares.

About this task

- You cannot change the RAID group of ONTAP systems that support array LUNs.
 - RAID0 is the only available option.
- You cannot change the RAID type of partitioned disks.
 - RAID-DP is the only option that is available for partitioned disks.
- You cannot rename a SnapLock Compliance aggregate.
- If the aggregate consists of SSDs with storage pool, you can modify only the name of the aggregate.
- If the triple parity disk size is 10 TB, and the other disks are smaller than 10 TB in size, then you can select RAID-DP or RAID-TEC as the RAID type.
- If the triple parity disk size is 10 TB, and if even one of the other disks is larger than 10 TB in size, then RAID-TEC is the only available option for RAID type.
- Step 1. Choose one of the following methods:
 - Click Applications & Tiers → Storage Tiers .
 - Click Storage → Aggregates & Disks → Aggregates.
- Step 2. Select the aggregate that you want to edit, and then click Edit.
- Step 3. In the Edit Aggregate dialog box, modify the aggregate name, the RAID type, and the RAID group size, as required.
- Step 4. Click Save.

Deleting aggregates

You can use Storage Manager to delete aggregates when you no longer require the data in the aggregates. However, you cannot delete the root aggregate because it contains the root volume, which contains the system configuration information.

Before you begin

© Copyright Lenovo 2018, 2023

- All the FlexVol volumes or the Infinite Volume and the associated storage virtual machines (SVMs) contained by the aggregate must be deleted.
- The aggregate must be offline.
- Step 1. Choose one of the following methods:

Click Applications & Tiers → Storage Tiers .

Click Storage → Aggregates & Disks → Aggregates.

- Select one or more aggregates that you want to delete, and then click **Delete**. Step 2.
- Step 3. Select the confirmation check box, and then click **Delete**.

Changing the RAID configuration when creating an aggregate

While creating a new aggregate, you can modify the default values of the RAID type and RAID group size options of the aggregate by using Storage Manager.

About this task

If the disk type of the aggregate disks is FSAS or MSATA, and the disk size is equal to or larger than 10 TB, then RAID-TEC is the only option available for RAID type.

Step 1. Choose one of the following methods:

Click Applications & Tiers → Storage Tiers .

Click Storage → Aggregates & Disks → Aggregates.

- Step 2. In the Storage Tiers window, click Add Aggregate.
- In the Create Aggregate dialog box, perform the following steps: Step 3.
 - Click Change.
 - In the Change RAID Configuration dialog box, specify the RAID type and RAID group size. RAID-DP is the only supported RAID type for shared disks.

The recommended RAID group size is 12 disks through 20 disks for HDDs, and 20 disks through 28 disks for SSDs.

C. Click Save .

Provisioning cache by adding SSDs

You can use Storage Manager to add SSDs as either storage pools or dedicated SSDs to provision cache. By adding SSDs, you can convert a non-root aggregate or a root aggregate that does not contain partitioned disks to a Flash Pool aggregate, or increase the cache size of an existing Flash Pool aggregate.

About this task

- The added SSD cache does not add to the size of the aggregate, and you can add an SSD RAID group to an aggregate even when it is at the maximum size.
- You cannot use partitioned SSDs when you add cache by using Storage Manager.

Provisioning cache to aggregates by adding SSDs

You can use Storage Manager to add storage pools or dedicated SSDs to provision cache by converting an existing non-root HDD aggregate or a root aggregate that does not contain partitioned disks to a Flash Pool aggregate.

Before you begin

- The aggregate must be online.
- There must be sufficient spare SSDs or allocation units in the storage pool that can be assigned as cache
 disks.
- All of the nodes in the cluster must be running ONTAP 8.3 or later.
 - If the cluster is in a mixed-version state, you can use the command-line interface to create a Flash Pool aggregate and then provide SSD cache.
- You must have identified a valid 64-bit non-root aggregate composed of HDDs that can be converted to a Flash Pool aggregate.
- The aggregate must not contain any array LUNs.
- The aggregate must not provision storage to an Infinite Volume.

About this task

You must be aware of platform-specific and workload-specific best practices for Flash Pool aggregate SSD tier size and configuration.

Step 1. Choose one of the following methods:

Click Applications & Tiers → Storage Tiers .

Click Storage → Aggregates & Disks → Aggregates .

Step 2. In the Storage Tiers window, select the aggregate, and then click More Actions > Add Cache.

Note: Adding cache is not supported on FabricPool-enabled aggregates.

Step 3. In the Add Cache dialog box, perform the appropriate action:

If you selected the cache source as	Do this
Storage pools	 Select the storage pool from which cache can be obtained. Specify the cache size. Modify the RAID type, if required.
Dedicated SSDs	Select the SSD size and the number of SSDs to include, and optionally modify the RAID configuration: 1. Click Change .
	In the Change RAID Configuration dialog box, specify the RAID type and RAID group size, and then click Save .

Step 4. Click Add.

For mirrored aggregates, an Add Cache dialog box is displayed with the information that twice the number of selected disks will be added.

Step 5. In the Add Cache dialog box, click Yes.

Result

The cache disks are added to the selected aggregate.

Increasing the cache for Flash Pool aggregates by adding SSDs

You can add SSDs as either storage pools or dedicated SSDs to increase the size of a Flash Pool aggregate by using Storage Manager.

Before you begin

- The Flash Pool aggregate must be online.
- There must be sufficient spare SSDs or allocation units in the storage pool that can be assigned as cache disks.
- Step 1. Click Storage → Aggregates & Disks → Aggregates.
- Step 2. In the Aggregates window, select the Flash Pool aggregate, and then click Add Cache.
- Step 3. In the Add Cache dialog box, perform the appropriate action:

If you selected the cache source as	Do this
Storage pools	Select the storage pool from which cache can be obtained, and specify the cache size.
Dedicated SSDs	Select the SSD size and the number of SSDs to include.

Step 4. Click Add.

For mirrored aggregates, an Add Cache dialog box is displayed with the information that twice the number of selected disks will be added.

Step 5. In the Add Cache dialog box, click Yes.

Result

The cache disks are added to the selected Flash Pool aggregate.

Adding capacity disks

You can increase the size of an existing non-root aggregate or a root aggregate containing disks by adding capacity disks. You can use Storage Manager to add HDDs or SSDs of the selected ONTAP disk type and to modify the RAID group options.

Before you begin

- The aggregate must be online.
- There must be sufficient compatible spare disks.

About this task

It is a best practice to add disks that are of the same size as the other disks in the aggregate.

If you add disks that are smaller in size than the other disks in the aggregate, the aggregate becomes suboptimal in configuration, which in turn might cause performance issues.

If you add disks that are larger in size than the disks that are available in a pre-existing RAID group within the aggregate, then the disks are downsized, and their space is reduced to that of the other disks in that RAID group. If a new RAID group is created in the aggregate and similar sized disks remain in the new RAID group, the disks will not be downsized.

If you add disks that are not of the same size as the other disks in the aggregate, the selected disks might not be added; instead, other disks with a usable size between 90 percent and 105 percent of the specified size are automatically added. For example, for a 744 GB disk, all of the disks in the range of 669 GB

through 781 GB are eligible for selection. For all of the spare disks in this range, ONTAP first selects only partitioned disks, then selects only unpartitioned disks, and finally selects both partitioned disks and unpartitioned disks.

- You cannot use Storage Manager to add HDDs to the following configurations:
 - Aggregates containing only SSDs
 - Root aggregates containing partitioned disks

You must use the command-line interface to add HDDs to these configurations.

- For shared disks, RAID-DP is the only supported RAID type.
- You cannot use SSDs with storage pool.
- If the RAID group type is RAID-DP, and if you are adding FSAS or MSATA type of disks that are equal to
 or larger than 10 TB in size, then you can add them only to Specific RAID group, and not to New RAID
 group or All RAID groups.

The disks are added after downsizing the disk size to the size of the disks in the pre-existing RAID group of the existing aggregate.

• If the RAID group type is RAID-TEC, and if you are adding FSAS or MSATA type of disks that are equal to or larger than 10 TB in size, then you can add them to All RAID groups, New RAID group, and Specific RAID group.

The disks are added after downsizing the disk size to the size of the disks in the pre-existing RAID group of the existing aggregate.

Step 1. Choose one of the following methods:

Click Applications & Tiers → Storage Tiers .

Click Storage → Aggregates & Disks → Aggregates.

- Step 2. In the Storage Tiers window, select the aggregate to which you want to add capacity disks, and then click **More Actions > Add Capacity**.
- Step 3. Specify the following in the Add Capacity dialog box:
 - a. The disk type for the capacity disks by using the **Disk Type to Add** option.
 - b. The number of capacity disks by using the **Number of Disks or Partitions** option.
- Step 4. Specify the RAID group to which the capacity disks are to be added by using the **Add Disks To** option.

By default, Storage Manager adds the capacity disks to All RAID groups.

- a. Click Change .
- In the RAID Group Selection dialog box, specify the RAID group as New RAID group or Specific RAID group by using the **Add Disks To** option.
 Shared disks can be added only to the New RAID group option.
- Step 5. Click Add

For mirrored aggregates, an Add Capacity dialog box is displayed with the information that twice the number of selected disks will be added.

Step 6. In the Add Capacity dialog box, click **Yes** to add the capacity disks.

Result

The capacity disks are added to the selected aggregate, and the aggregate size is increased.

Changing the RAID group when adding capacity disks

While adding capacity disks (HDDs) to an aggregate, you can change the RAID group to which you want to add the disks by using Storage Manager.

About this task

 If the RAID type is RAID-DP, and if you are adding FSAS or MSATA type of disks that are equal to or larger than 10 TB in size, then you can add them only to Specific RAID group, and not to New RAID group or All RAID groups.

The disks are added after downsizing the disk size to the size of the existing aggregates.

If the RAID group is RAID-TEC, and if you are adding FSAS or MSATA type of disks that are equal to or larger than 10 TB in size, then you can add them to All RAID groups. New RAID group, and Specific RAID group.

The disks are added after downsizing the disk size to the size of the existing aggregates.

Choose one of the following methods:

Click Applications & Tiers → Storage Tiers .

Click Storage → Aggregates & Disks → Aggregates.

- Step 2. In the Storage Tiers window, select the aggregate to which you want to add capacity disks, and then click More Actions > Add Capacity.
- Step 3. In the Add Capacity dialog box, perform the following steps:
 - Click **Change**.
 - In the Change RAID Configuration dialog box, specify the RAID group to which you want to add the capacity disks.
 - You can change the default value All RAID groups to either Specific RAID group or New RAID group.
 - Click Save.

Moving FlexVol volumes

You can nondisruptively move a FlexVol volume to a different aggregate or a different node for capacity utilization and improved performance by using Storage Manager.

Before you begin

If you are moving a data protection volume, data protection mirror relationships must be initialized before you move the volume.

About this task

When you move a volume that is hosted on a Flash Pool aggregate, only the data that is stored in the HDD tier is moved to the destination aggregate.

The cache data that is associated with the volume is not moved to the destination aggregate. Therefore, some performance degradation might occur after the volume move.

If the aggregate contains Infinite Volume constituents, the wizard does not display the constituents because you cannot use Storage Manager to move the constituents of an Infinite Volume.

You cannot move volumes from a SnapLock aggregate.

- You cannot move volumes from an SVM that is configured for disaster recovery to a FabricPool-enabled aggregate.
- Step 1. Choose one of the following methods:

Click Applications & Tiers → Storage Tiers .

Click Storage → Aggregates & Disks → Aggregates.

- Step 2. Select the aggregate that contains the volume, and then click More Actions > Volume Move.
- Step 3. Type or select information as prompted by the wizard.
- Step 4. Confirm the details, and then click **Finish** to complete the wizard.

Mirroring aggregates

You can use Storage Manager to protect data and to provide increased resiliency by mirroring data in realtime, within a single aggregate. Mirroring aggregates removes single points of failure in connecting to disks and array LUNs.

Before you begin

There must be sufficient free disks in the other pool to mirror the aggregate.

About this task

You cannot mirror a Flash Pool aggregate when the cache source is storage pool.

Step 1. Choose one of the following methods:

Click Applications & Tiers → Storage Tiers .

Click Storage → Aggregates & Disks → Aggregates.

Step 2. Select the aggregate that you want to mirror, and then click **More Actions > Mirror**.

Note: SyncMirror is not supported on FabricPool-enabled aggregates.

Step 3. In the Mirror this aggregate dialog box, click **Mirror** to initiate the mirroring.

Viewing aggregate information

You can use the Aggregates window in Storage Manager to view the name, status, and space information about an aggregate.

Step 1. Choose one of the following methods:

Click Applications & Tiers → Storage Tiers .

Click Storage → Aggregates & Disks → Aggregates .

Step 2. Click on the aggregate name to view the details of the selected aggregate.

Installing a CA certificate if you use StorageGRID Webscale

For ONTAP to authenticate with StorageGRID as the object store for a FabricPool-enabled aggregate, you can install a StorageGRID CA certificate on the cluster.

- Follow the StorageGRID system documentation to copy the CA certificate of the StorageGRID Step 1. system by using the Grid Management Interface. StorageGRID Webscale 11.0 Administrator Guide While adding StorageGRID as an external capacity tier, a message is displayed if the CA certificate is not installed.
- Step 2. Add the StorageGRID CA certificate.

Note: The fully qualified domain name (FQDN) that you specify must match the custom common name on the StorageGRID CA certificate.

How moving a FlexVol volume works

Knowing how moving a FlexVol volume works helps you to determine whether the volume move satisfies service-level agreements and to understand where a volume move is in the volume move process.

FlexVol volumes are moved from one aggregate or node to another within the same storage virtual machine (SVM). A volume move does not disrupt client access during the move.

Moving a volume occurs in multiple phases:

- A new volume is made on the destination aggregate.
- The data from the original volume is copied to the new volume.

During this time, the original volume is intact and available for clients to access.

- At the end of the move process, client access is temporarily blocked.
 - During this time the system performs a final replication from the source volume to the destination volume, swaps the identities of the source and destination volumes, and changes the destination volume to the source volume.
- After completing the move, the system routes client traffic to the new source volume and resumes client access.

The move is not disruptive to client access because the time in which client access is blocked ends before clients notice a disruption and time out. Client access is blocked for 35 seconds by default. If the volume move operation cannot finish in the time that access is denied, the system aborts this final phase of the volume move operation and allows client access. The system attempts the final phase three times by default. After the third attempt, the system waits an hour before attempting the final phase sequence again. The system runs the final phase of the volume move operation until the volume move is complete.

How you can use effective ONTAP disk type for mixing HDDs

Starting with Data ONTAP 8.1, certain ONTAP disk types are considered equivalent for the purposes of creating and adding to aggregates, and managing spares. ONTAP assigns an effective disk type for each disk type. You can mix HDDs that have the same effective disk type.

When the raid disktype enable option is set to off, you can mix certain types of HDDs within the same aggregate. When the raid disktype enable option is set to on, the effective disk type is the same as the ONTAP disk type. Aggregates can be created using only one disk type. The default value for the raid. disktype.enable option is off.

Starting with Data ONTAP 8.2, the option raid.mix.hdd.disktype.capacity must be set to on to mix disks of type BSAS, FSAS, and ATA. The option raid.mix.hdd.disktype.performance must be set to on to mix disks of type FCAL and SAS.

The following table shows how the disk types map to the effective disk type:

ONTAP disk type	Effective disk type
FCAL	SAS
SAS	SAS
АТА	FSAS
BSAS	FSAS
FCAL and SAS	SAS
MSATA	MSATA
FSAS	FSAS

What compatible spare disks are

In Storage Manager, compatible spare disks are disks that match the properties of other disks in the aggregate. When you want to increase the size of an existing aggregate by adding HDDs (capacity disks) or change the RAID type of an aggregate from RAID4 to RAID-DP, the aggregate must contain sufficient compatible spare disks.

Disk properties that must match are the disk type, disk size (can be a higher size disk in case the same disk size is not available), disk RPM, checksum, node owner, pool, and shared disk properties. If you use higher sized disks, you must be aware that disk downsizing occurs and the size of all disks are reduced to the lowest disk size. Existing shared disks are matched with higher size non-shared disks, and the non-shared disks are converted to shared disks and added as spares.

If RAID mixing options, such as disk type mixing and disk RPM mixing, are enabled for the RAID group, the disk type and disk RPM of the existing disks of the aggregate are matched with the effective disk type and effective disk RPM of the spare disks to obtain compatible spares.

How Storage Manager works with hot spares

A hot spare is a disk that is assigned to a storage system but not used by any RAID group. Hot spares do not contain any data and are assigned to a RAID group when a disk failure occurs in the RAID group. Storage Manager uses the largest disk as the hot spare.

When there are different disk types in the RAID group, the largest-sized disk of each disk type is left as the hot spare. For example, if there are 10 SATA disks and 10 SAS disks in the RAID group, the largest-sized SATA disk and the largest-sized SAS disk are serve as hot spares.

If the largest-sized disk is partitioned, then the hot spares are provided separately for partitioned and non-partitioned RAID groups. If the largest-sized disk is unpartitioned, then a single spare disk is provided.

The largest-sized non-partitioned disk is left as a hot spare if there are root partitions in the disk group. When a non-partitioned disk of the same size is not available, then spare root partitions are left as hot spares for the root partitioned group.

A single spare disk can serve as a hot spare for multiple RAID groups. Storage Manager calculates the hot spares based on the value set in the option raid.min_spare_count at the node level. For example, if there are 10 SSDs in an SSD RAID group and the option raid.min_spare_count is set to 1 at the node level, Storage Manager leaves 1 SSD as the hot spare and uses the other 9 SSDs for SSD-related operations. Similarly, if there are 10 HDDs in an HDD RAID group and the option raid.min_spare_count is set to 2 at the node level, Storage Manager leaves 2 HDDs as hot spares and uses the other 8 HDDs for HDD-related operations.

Storage Manager enforces the hot spare rule for RAID groups when you create an aggregate, edit an aggregate, and when you add HDDs or SSDs to an aggregate. The hot spare rule is also used when you create a storage pool or add disks to an existing storage pool.

There are exceptions to the hot spare rule in Storage Manager:

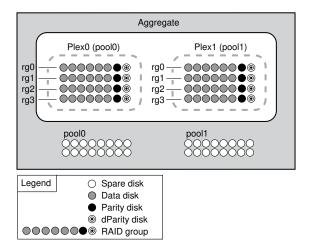
- For MSATA or disks in a multi-disk carrier, the number of hot spares is twice the value set at the node level and the number must not be less than 2 at any time.
- Hot spares are not used if the disks are part of array LUNs or virtual storage appliances.

Rules for displaying disk types and disk RPM

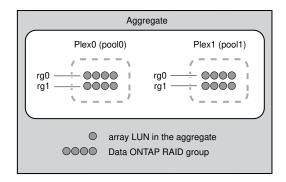
When you are creating an aggregate and adding capacity disks to an aggregate, you should understand the rules that apply when disk types and disk RPM are displayed.

When the disk type mixing and the disk RPM mixing options are not enabled, the actual disk type and actual disk RPM are displayed.

When these mixing options are enabled, the effective disk type and effective disk RPM are displayed instead of the actual disk type and actual disk RPM. For example, when the disk mixing option is enabled, Storage Manager displays BSAS disks as FSAS. Similarly, when the disk RPM mixing option is enabled, if the RPM of the disks is 10K and 15K, Storage Manager displays the effective RPM as 10K.


How mirrored aggregates work

Mirrored aggregates have two plexes (copies of their data), which use the SyncMirror functionality to duplicate the data to provide redundancy.


When a mirrored aggregate is created (or when a second plex is added to an existing unmirrored aggregate). ONTAP copies the data in the original plex (plex0) to the new plex (plex1). The plexes are physically separated (each plex has its own RAID groups and its own pool), and the plexes are updated simultaneously. This provides added protection against data loss if more disks fail than the RAID level of the aggregate protects against or there is a loss of connectivity, because the unaffected plex continues to serve data while you fix the cause of the failure. After the plex that had a problem is fixed, the two plexes resynchronize and reestablish the mirror relationship.

The disks and array LUNs on the system are divided into two pools: pool0 and pool1. Plex0 gets its storage from pool0 and plex1 gets its storage from pool1.

The following diagram shows an aggregate composed of disks with the SyncMirror functionality enabled and implemented. A second plex has been created for the aggregate, plex1. The data in plex1 is a copy of the data in plex0, and the RAID groups are also identical. The 32 spare disks are allocated to pool0 or pool1, 16 disks for each pool.

The following diagram shows an aggregate composed of array LUNs with the SyncMirror functionality enabled and implemented. A second plex has been created for the aggregate, plex1. Plex1 is a copy of plex0, and the RAID groups are also identical.

What a FabricPool is

FabricPool is a hybrid storage solution that uses an all flash (all SSD) aggregate as the performance tier and an object store as the external capacity tier. Data in a FabricPool is stored in a tier based on whether it is frequently accessed or not. Using a FabricPool helps you reduce storage cost without compromising performance, efficiency, or protection.

Storage recommendations for creating aggregates

Starting with Storage Manager 9.4, you can create aggregates based on storage recommendations. However, you must determine whether create aggregates based on storage recommendations is supported in your environment. If it is not, you must decide the RAID policy and disk configuration, and then create the aggregates manually.

Storage Manager analyzes the available spare disks in the cluster and generates a recommendation about how the spare disks should be used to create aggregates according to best practices. Storage Manager displays the summary of recommended aggregates including their names and usable size.

In many cases, the storage recommendation will be optimal for your environment. However, if your cluster is running ONTAP 9.4, or if your environment includes the following configurations, you must create aggregates manually:

- Aggregates using third-party array LUNs
- Virtual disks with ONTAP Cloud or ONTAP Select

- MetroCluster configurations
- SyncMirror functionality
- MSATA disks
- Flash Pool aggregates
- Multiple disk types or sizes are connected to the node

In addition, if any of the following disk conditions exist in your environment, you must rectify the disk conditions before you use the storage recommendation to create aggregates:

- Missing disks
- Fluctuation in spare disk numbers
- Unassigned disks
- Non-zeroed spares
- Disks that are undergoing maintenance testing

Storage Tiers window

You can use the Storage Tiers window to view cluster-wide space details and to add and view aggregate details.

The Internal Tier panel, or the Performance Tier panel if the cluster has all flash (all SSD) aggregates, displays cluster-wide space details such as the sum of the total sizes of all of the aggregates, the space used by the aggregates in the cluster, and the available space in the cluster.

The External Capacity Tier panel displays the total licensed external capacity tiers in the cluster, the licensed space that is used in the cluster, and the licensed space that is available in the cluster. The External Capacity Tier panel also displays the unlicensed external capacity that is used.

Aggregates are grouped by type, and the aggregate panel displays details about the total aggregate space, space used, and the available space. You can select the aggregate and perform any of the aggregate-related actions.

Command buttons

Add Aggregate

Actions

Enables you to create an aggregate.

Provides the following options:

Change status to

Changes the status of the selected aggregate to one of the following statuses:

On-Read line and write access to the volumes that are contained in this aggregate is allowed. Off-Read line and write access is not allowed. Re-Sostrict me operations such as

parity reconstruction are allowed, but data access is not allowed.

Add Capacity

Enables you to add capacity (HDDs or SSDs) to existing aggregates.

Add Cache

Enables you to add cache disks (SSDs) to existing HDD aggregates or Flash Pool aggregates. You cannot add cache disks to FabricPoolenabled aggregates.

This option is not available for a cluster containing nodes with All Flash Optimized personality.

Mirror Enables you to

mirror the aggregates.

Volume Move Enables you to

move a FlexVol volume.

Details area

You can click the aggregate name to view detailed information about the aggregate.

Overview tab Displays detailed information about the selected

aggregate, and displays a pictorial representation of the space allocation of the aggregate, the space savings of the aggregate, and the performance of

the aggregate.

Disk Information tab Displays the disk layout information for the selected

aggregate.

Volumes tab

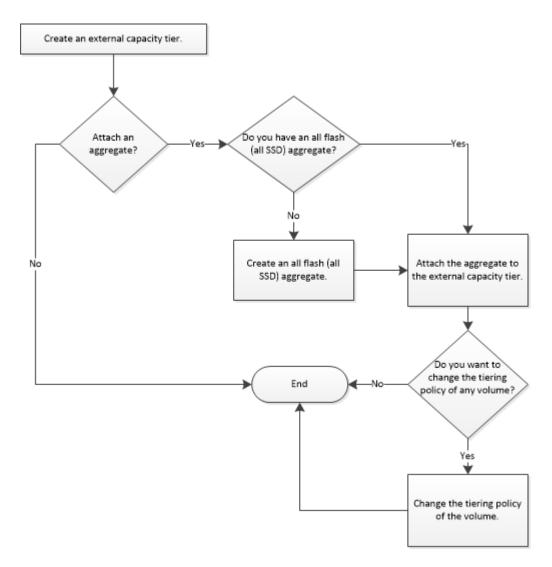
Displays details about the total number of volumes on the aggregate, the total aggregate space, and

the space committed to the aggregate.

Performance tab Displays graphs that show the performance metrics

of the aggregates, including throughput and IOPS. Performance metrics data for read, write, and total transfers is displayed for throughput and IOPS, and the data for SSDs and HDDs is recorded separately.

Changing the client time zone or the cluster time zone impacts the performance metrics graphs. If you change the client time zone or the cluster time zone, you should refresh your browser to view the


updated graphs.

Configuring and managing external capacity tiers

Storing data in tiers can enhance the efficiency of your storage system. You manage storage tiers by using FabricPool-enabled aggregates. External capacity tiers stores data in a tier based on whether the data is frequently accessed.

Before you begin

- You must be running ONTAP 9.2 or later.
- You must have all flash (all SSD) aggregates

Adding an external capacity tier

You can use Storage Manager to add an external capacity tier to an SSD aggregate or a VMDISK aggregate. External capacity tiers provide storage for infrequently used data.

Before you begin

- You must have the access key ID and secret key to connect to the object store.
- You must have created a bucket inside the object store.
- Network connectivity must exist between the cluster and the external capacity tier.
- If communication between the external capacity tier and cluster is encrypted using SSL or TLS, the required certificates must be installed.

About this task

The supported object stores that can be used as external capacity tiers are StorageGRID, Amazon AWS S3, and Microsoft Azure Blob storage.

Notes:

Azure Stack, which is an on-premises Azure services, is not supported.

- If you want to use Amazon AWS S3 or Microsoft Azure Blob storage as an external capacity tier, you must have the FabricPool capacity license.
- Step 1. Click Storage → Aggregates & Disks → External Capacity Tier.
- Step 2. Click **Add External Capacity Tier**.

 The Add External Capacity Tier window is displayed.
- Step 3. Specify the server name that hosts the external capacity tier, the port to access the external capacity tier, the access key ID of the external capacity tier, the secret key of the external tier, and the container name.
- Step 4. Enable the SSL option if you want to transfer the data securely to the external capacity tier.
- Step 5. If you want to add an external capacity tier for StorageGRID, enable the **Object Store Certificate** option, copy the contents of the certificate, and then paste the certificate contents in the signed certification.
- Step 6. From the IPspace list, select the IPspace that is used to connect to the external capacity tier.
- Step 7. Click **Save** to save the external capacity tier.
- Step 8. Click **Save and Attach Aggregates** to save the external capacity tier and to attach aggregates to the external capacity tier.

Attaching an aggregate to an external capacity tier

You can use Storage Manager to attach an All Flash aggregate to an external capacity tier. You can store infrequently used data in external capacity tiers.

Before you begin

You must have added an external capacity tier to the cluster.

- Step 1. Click Storage → Aggregates & Disks → External Capacity Tier.
- Step 2. In the Used in Aggregates column, click **Attach Aggregates** . The Attach Aggregates window is displayed.
- Step 3. Select the aggregate that you want to attach to the external capacity tier.
- Step 4. If you want to update the tiering policy of the volumes that are on the selected aggregate, click **View and Update Tiering Policy for Volumes**.
- Step 5. Click the **Change Tiering Policy** list, and then update the tiering policy.
- Step 6. Click Save.

Provisioning storage by creating a FabricPool-enabled aggregate manually

You can use Storage Manager to create a FabricPool-enabled aggregate to attach an external capacity tier to the SSD aggregate.

Before you begin

- You must have created an external capacity tier and attached the external capacity tier to the cluster in which the SSD aggregate resides.
- An on-premises external capacity tier must have been created.
- A dedicated network connection must exist between the external capacity tier and the aggregate.

About this task

 The supported external capacity tiers are StorageGRID, Amazon AWS S3, and Microsoft Azure Blob storage.

Notes:

- Azure Stack, which is an on-premises Azure services, is not supported.
- If you want to use Amazon AWS S3 or Microsoft Azure Blob storage as an external capacity tier, you
 must have the FabricPool capacity license.
- FabricPool-enabled aggregates are not supported on MetroCluster configurations.
- Step 1. Create a FabricPool-enabled aggregate by using one of the following methods:
 - Click Applications & Tiers → Storage Tiers → Add Aggregate.
 - Click Storage → Aggregate & Disks → Aggregates → Create.
- Step 2. Enable the **Manually Create Aggregate** option to create an aggregate.
- Step 3. To create a FabricPool-enabled aggregate:
 - a. Specify the name of the aggregate, the disk type, and the number of disks or partitions to include in the aggregate.

Note: Only all flash (all SSD) aggregates support FabricPool-enabled aggregates.

The minimum hot spare rule is applied to the disk group that has the largest disk size.

- b. Modify the RAID configuration of the aggregate:
 - 1. Click Change.
 - 2. In the Change RAID Configuration dialog box, specify the RAID type and the RAID group size.

RAID-DP is the only supported RAID type for shared disks.

- 3. Click Save.
- Step 4. Select the FabricPool checkbox, and then select an external capacity tier from the list.
- Step 5. Click Create.

Changing the tiering policy of a volume

You can use Storage Manager to change the default tiering policy of a volume to control whether the data of the volume is moved to the capacity tier when the data becomes inactive.

- Step 1. Click Storage → Volumes.
- Step 2. From the Volumes on SVM list, select All SVMs.
- Step 3. Select the volume for which you want to change the tiering policy, and then click **More Actions** → **Change Tiering Policy**.
- Step 4. Select the required tiering policy from the Tiering Policy list, and then click **Save** .

Editing an external capacity tier

You can use Storage Manager to modify the configuration information of an external capacity tier. The configuration details that you can edit include the name, fully qualified domain name (FQDN), port, access key ID, secret key, and object store certificate.

Step 1. Click Storage → Aggregates & Disks → External Capacity Tier.

- Step 2. Select the external capacity tier that you want to edit, and then click Edit .
- Step 3. In the Edit External Capacity Tier window, modify the external capacity tier name, FQDN, port, access key ID, secret key, and object store certificate, as required.
- Step 4. Click Save.

Deleting an external capacity tier

You can use Storage Manager to delete an external capacity tier that you no longer require.

Before you begin

You must have deleted the FabricPool-enabled aggregate that is associated with the external capacity tier.

- Step 1. Click Storage → Aggregates & Disks → External Capacity Tier.
- Step 2. Select the external capacity tier that you want to delete, and then click **Delete**.

What external capacity tiers and tiering policies are

External capacity tiers provide storage for infrequently accessed data. You can attach an all flash (all SSD) aggregate to an external capacity tier to store infrequently used data. You can use tiering policies to decide whether data should be moved to an external capacity tier.

You can set one of the following tiering policies on a volume:

Snapshot-only	Moves the Snapshot copies of only those volumes that are currently not being referenced by the active file system. Snapshot-only policy is the default tiering policy.
None	Prevents the data on the volume from being moved to an external capacity tier.
Backup	Moves the newly transferred data of a data protection (DP) volume to the external capacity tier.
Auto	Moves the inactive (cold) data and the Snapshot copies from the active file system to the external capacity tier.

What inactive (cold) data is

Infrequently accessed data in a performance tier is known as inactive (cold) data. By default, data that is not accessed for a period of 31 days becomes inactive.

Inactive data is displayed at the aggregate level, cluster level, and volume level. The inactive data for an aggregate or a cluster is displayed only if inactive scanning is complete on that aggregate or cluster. By default, inactive data is displayed for FabricPool-enabled aggregates. If you want to view inactive data for SSD aggregates, you must manually enable inactive data.

External Capacity Tier window

You can use Storage Manager to add, edit, and delete external capacity tiers and to view external capacity tier details.

The External Capacity Tier panel displays the total number of licensed external capacity tiers in the cluster, the licensed space that is used in the cluster, and the licensed space that is available in the cluster. The External Capacity Tier panel also displays the unlicensed external capacity that is used.

Command buttons

Add Enables you to add an external capacity tier.

Attach Aggregates Enables you to attach aggregates to an external

capacity tier.

Delete Enables you to delete a selected external capacity

tier.

Edit

Enables you to modify the properties of a selected

external capacity tier.

Details area

You can view detailed information about external capacity tiers such as the list of external capacity tiers, the details of the object stores, the aggregates used, and the used capacity.

If you create an external capacity tier other than StorageGRID, Amazon AWS S3, and Microsoft Azure Blob storage by using the command-line interface (CLI), this external capacity tier is displayed as Others in Storage Manager. You can then attach aggregates to this external capacity tier.

Aggregates

You can use Storage Manager to create aggregates to support the differing security, backup, performance, and data sharing requirements of your users.

Aggregates window

You can use the Aggregates window to create, display, and manage information about aggregates.

- "Aggregates window" on page 126
- "Aggregate list" on page 127
- " Details area" on page 128
- "Command buttons" on page 126

Command buttons

Create Opens the Create Aggregate dialog box, which

enables you to create an aggregate.

Edit Opens the Edit Aggregate dialog box, which

enables you to change the name of an aggregate or the level of RAID protection that you want to provide

for the aggregate.

Delete Deletes the selected aggregate.

Note: This button is disabled for the root

aggregate.

More Actions Provides the following options:

Change status to Changes the status of the selected aggregate to one of the following statuses:

Online

Read and write access to the volumes that are contained in this aggregate is allowed.

Offline

Read and write access is not allowed.

Restrict

Some operations—such as parity reconstruction—are allowed, but data access is not allowed.

Add Capacity Enables you to add capacity (HDDs or SSDs) to

existing aggregates.

Add Cache Enables you to add cache disks (SSDs) to existing

HDD aggregates or Flash Pool aggregates.

This button is not available for a cluster containing

nodes with All Flash Optimized personality.

Mirror Enables you to mirror the aggregates.

Volume Move Enables you to move a FlexVol volume.

Attach External Capacity Tier Enables you to attach an external capacity tier to

the aggregate.

Refresh Updates the information in the window.

Aggregate list

Displays the name and the space usage information for each aggregate.

Status Displays the status of the aggregate.

Name Displays the name of the aggregate.

Node Displays the name of the node to which the disks of

the aggregate are assigned.

This field is available only at the cluster level.

Type Displays the type of the aggregate.

This field is not displayed for a cluster containing

nodes with All Flash Optimized personality .

Used (%) Displays the percentage of space that is used in the

aggregate.

Available Space Displays the available space in the aggregate.

Used Space Displays the amount of space that is used for data

in the aggregate.

Total Space Displays the total space of the aggregate.

FabricPool Displays whether the selected aggregate is

attached to an external capacity tier.

External Capacity Tier If the selected aggregate is attached to an external

capacity tier, displays the name of the external

capacity tier.

Volume Count Displays the number of volumes that are associated

with the aggregate.

Disk Count Displays the number of disks that are used to create

the aggregate.

Flash Pool Displays the total cache size of the Flash Pool

aggregate . A value of NA indicates that the aggregate is not a Flash Pool aggregate .

This field is not displayed for a cluster containing

nodes with All Flash Optimized personality.

Mirrored Displays whether the aggregate is mirrored.

SnapLock Type Displays the SnapLock type of the aggregate.

Details area

Select an aggregate to view information about the selected aggregate. You can click Show More Details to view detailed information about the selected aggregate.

Overview tab Displays detailed information about the selected

aggregate, and displays a pictorial representation of the space allocation of the aggregate, the space savings of the aggregate, which includes the total logical space used, total physical space used, overall savings from storage efficiency, data reduction ratio, FlexClone volume ratio, and Snapshot copies ratio, and the performance of the

aggregate in IOPS and total data transfers.

Disk Information tab Displays disk layout information such as the name

of the disk, disk type, physical size, usable size, disk position, disk status, plex name, plex status, RAID group, RAID type, and storage pool (if any) for the selected aggregate. The disk port that is associated with the disk primary path and the disk name with the disk secondary path for a multipath

configuration are also displayed.

Volumes tab Displays details about the total number of volumes

on the aggregate, total aggregate space, and the

space committed to the aggregate.

Performance tab Displays graphs that show the performance metrics

of the aggregates, including total transfers and IOPS. Performance metrics data for read, write, and total transfers is displayed, and the data for SSDs

and HDDs is recorded separately.

Changing the client time zone or the cluster time zone impacts the performance metrics graphs. You should refresh your browser to view the updated

graphs.

Storage pools

You can use Storage Manager to create storage pools to enable SSDs to be shared by multiple Flash Pool aggregates.

Creating a storage pool

A storage pool is a collection of SSDs (cache disks). You can use Storage Manager to combine SSDs to create a storage pool, which enables you to share the SSDs and SSD spares between an HA pair for allocation to two or more Flash Pool aggregates at the same time.

Before you begin

- Both nodes of the HA pair must be up and running in order to allocate SSDs and SSD spares through a storage pool.
- Storage pools must have a minimum of 3 SSDs.
- All SSDs in a storage pool must be owned by the same HA pair.

About this task

Storage Manager enforces the hot spare rule for SSD RAID groups when you use SSDs for adding disks to a storage pool. For example, if there are 10 SSDs in the SSD RAID group and the option raid.min_spare_count is set to 1 at the node level, Storage Manager leaves 1 SSD as the hot spare and uses the other 9 SSDs for SSD-related operations.

You cannot use partitioned SSDs when creating a storage pool by using Storage Manager.

- Step 1. Click Storage → Aggregates & Disks → Storage Pools.
- Step 2. In the Storage Pools window, click Create.
- Step 3. In the Create Storage Pool dialog box, specify the name for the storage pool, disk size, and the number of disks.
- Step 4. Click Create.

Adding disks to a storage pool

You can add SSDs to an existing storage pool and increase its cache size by using Storage Manager.

Before you begin

Both nodes of the HA pair must be up and running in order to allocate SSDs and SSD spares through a storage pool.

About this task

- The SSDs that you add to a storage pool are distributed proportionally among the aggregates using the storage pool cache and to the free space of the storage pool.
- Storage Manager enforces the hot spare rule for SSD RAID groups when you use SSDs for adding disks
 to a storage pool. For example, if there are 10 SSDs in the SSD RAID group and the option raid.min_
 spare_count is set to 1 at the node level, Storage Manager leaves 1 SSD as the hot spare and uses the
 other 9 SSDs for SSD-related operations.
- You cannot use partitioned SSDs when adding disks to a storage pool by using Storage Manager.
- Step 1. Click Storage → Aggregates & Disks → Storage Pools.
- Step 2. In the Storage Pools window, select the storage pool, and then click Add Disks.
- Step 3. In the Add Disks dialog box, specify the number of disks that you want to add.
- Step 4. Click Next.
- Step 5. In the Summary dialog box, review how the cache is distributed among various aggregates and the free space of the storage pool.
- Step 6. Click Add.

Deleting storage pools

You might want to delete a storage pool when the cache of the storage pool is not optimal or when it is no longer used by any aggregate or Flash Pool aggregate. You can delete a storage pool by using the Delete Storage Pool dialog box in Storage Manager.

Before you begin

The storage pool must not be used by any aggregate.

- Step 1. Click Storage → Aggregates & Disks → Storage Pools.
- Step 2. In the Storage Pools window, select the storage pool that you want to delete, and then click **Delete** .
- Step 3. In the Delete Storage Pool dialog box, click **Delete**.

How to use SSD storage pools

To enable SSDs to be shared by multiple Flash Pool aggregates, you can add the SSDs to a *storage pool*. After you add an SSD to a storage pool, you can no longer manage the SSD as a stand-alone entity. You must use the storage pool to assign or allocate the storage that is provided by the SSD.

You can create storage pools for a specific high-availability (HA) pair. Then, you can add allocation units from that storage pool to one or more Flash Pool aggregates that are owned by the same HA pair. Just as disks must be owned by the same node that owns an aggregate before the disks can be allocated to it, storage pools can provide storage only to the Flash Pool aggregates that are owned by one of the nodes that owns the storage pool.

If you have to increase the amount of Flash Pool cache on your system, you can add more SSDs to a storage pool, up to the maximum RAID group size for the RAID type of the Flash Pool caches that are using the storage pool. When you add an SSD to an existing storage pool, you increase the size of the storage pool's allocation units, including any allocation units that are already allocated to a Flash Pool aggregate.

You can use only one spare SSD for a storage pool, so that if an SSD in that storage pool becomes unavailable, ONTAP can use the spare SSD to reconstruct the partitions of the malfunctioning SSD. You do not have to reserve any allocation units as spare capacity; ONTAP can use only a full, unpartitioned SSD as a spare for the SSDs in a storage pool.

After you add an SSD to a storage pool, you cannot remove the SSD, just as you cannot remove disks from an aggregate. If you want to use the SSDs in a storage pool as discrete drives again, you must destroy all of the Flash Pool aggregates to which the storage pool's allocation units have been allocated, and then destroy the storage pool.

Requirements and best practices for using SSD storage pools

Some technologies cannot be combined with Flash Pool aggregates that use SSD storage pools.

You cannot use the following technologies with Flash Pool aggregates that use SSD storage pools for their cache storage:

- MetroCluster
- SyncMirror functionality

Mirrored aggregates can coexist with Flash Pool aggregates that use storage pools; however, Flash Pool aggregates cannot be mirrored.

Physical SSDs

Flash Pool aggregates can use SSD storage pools or physical SSDs, but not both.

SSD storage pools must conform to the following rules:

- SSD storage pools can contain only SSDs; HDDs cannot be added to an SSD storage pool.
- SSD storage pools can contain between 3 and 28 SSDs.

If an SSD storage pool contains more SSDs than the maximum RAID4 RAID group size for SSDs, then the SSD storage pool cannot be used for a Flash Pool aggregate whose cache has a RAID type of RAID4.

- All of the SSDs in an SSD storage pool must be owned by the same high-availability (HA) pair.
- You cannot use SSDs that have been partitioned for root-data partitioning in a storage pool.

If you provide storage from a single storage pool to two caches with different RAID types, and you expand the size of the storage pool beyond the maximum RAID group size for RAID4, the extra partitions in the RAID4 allocation units go unused. Therefore, it is a best practice to keep your cache RAID types homogenous for a storage pool.

You cannot change the RAID type of cache RAID groups that are allocated from a storage pool. You set the RAID type for the cache before adding the first allocation units, and you cannot change the RAID type later.

When you create a storage pool or add SSDs to an existing storage pool, you must use the same size SSDs. If a failure occurs and no spare SSD of the correct size exists, ONTAP can use a larger SSD to replace the failed SSD. However, the larger SSD is right-sized to match the size of the other SSDs in the storage pool, resulting in lost SSD capacity.

You can use only one spare SSD for a storage pool. If the storage pool provides allocation units to the Flash Pool aggregates that are owned by both nodes in the HA pair, then the spare SSD can be owned by either node. However, if the storage pool provides allocation units only to the Flash Pool aggregates that are owned by one of the nodes in the HA pair, then the SSD spare must be owned by that same node.

Considerations for when to use SSD storage pools

SSD storage pools provide many benefits, but they also introduce some restrictions that you should be aware of when deciding whether to use SSD storage pools or dedicated SSDs.

SSD storage pools make sense only when they are providing cache to two or more Flash Pool aggregates. SSD storage pools provide the following benefits:

Increased storage utilization for SSDs used in Flash Pool aggregates

SSD storage pools reduce the overall percentage of SSDs needed for parity by enabling you to share parity SSDs between two or more Flash Pool aggregates.

Ability to share spares between HA partners

Because the storage pool is effectively owned by the HA pair, one spare, owned by one of the HA partners, can function as a spare for the entire SSD storage pool if needed.

Better utilization of SSD performance

The high performance provided by SSDs can support access by both controllers in an HA pair.

These advantages must be weighed against the costs of using SSD storage pools, which include the following items:

Reduced fault isolation

The loss of a single SSD affects all RAID groups that include one of its partitions. In this situation, every Flash Pool aggregate that has cache allocated from the SSD storage pool that contains the affected SSD has one or more RAID groups in reconstruction.

Reduced performance isolation

If the Flash Pool cache is not properly sized, there can be contention for the cache between the Flash Pool aggregates that are sharing it. This risk can be mitigated with proper cache sizing and QoS controls.

Decreased management flexibility

When you add storage to a storage pool, you increase the size of all Flash Pool caches that include one or more allocation units from that storage pool; you cannot determine how the extra capacity is distributed.

Considerations for adding SSDs to an existing storage pool versus creating a new one

You can increase the size of your SSD cache in two ways—by adding SSDs to an existing SSD storage pool or by creating a new SSD storage pool. The best method for you depends on your configuration and plans for the storage.

The choice between creating a new storage pool or adding storage capacity to an existing one is similar to deciding whether to create a new RAID group or add storage to an existing one:

- If you are adding a large number of SSDs, creating a new storage pool provides more flexibility because you can allocate the new storage pool differently from the existing one.
- If you are adding only a few SSDs, and increasing the RAID group size of your existing Flash Pool caches is not an issue, then adding SSDs to the existing storage pool keeps your spare and parity costs lower, and automatically allocates the new storage.

If your storage pool is providing allocation units to Flash Pool aggregates whose caches have different RAID types, and you expand the size of the storage pool beyond the maximum RAID4 RAID group size, the newly added partitions in the RAID4 allocation units are unused.

Why you add disks to storage pools

You can add SSDs to an existing storage pool and increase its cache size. When you add SSDs to a storage pool that has allocation units already allocated to Flash Pool aggregates, you increase the cache size of each of those aggregates and the total cache of the storage pool.

If the allocation units of the storage pool are not yet allocated, adding SSDs to that storage pool does not affect the SSD cache size.

When you add SSDs to an existing storage pool, the SSDs must be owned by one node or the other of the same HA pair that already owned the existing SSDs in the storage pool. You can add SSDs that are owned by either node of the HA pair.

How storage pool works

A storage pool is a collection of SSDs. You can combine SSDs to create a storage pool, which enables you to share the SSDs and SSD spares across multiple Flash Pool aggregates, at the same time.

Storage pools consist of allocation units, which you can use to provide SSDs and SSD spares to aggregates or to increase the existing SSD size.

After you add an SSD to a storage pool, you can no longer use the SSD as an individual disk. You must use the storage pool to assign or allocate the storage provided by the SSD.

Storage Pools window

You can use the Storage Pools window to create, display, and manage a dedicated cache of SSDs, also known as *storage pools*. These storage pools can be associated with a non-root aggregate to provide SSD cache and with a Flash Pool aggregate to increase its size.

This page is not available for a cluster containing nodes with All Flash Optimized personality.

- "Command buttons" on page 133
- "Storage pools list" on page 133
- " Details tab " on page 134

Command buttons

Create	Opens the Create Storage Pool dialog box, which enables you to create a storage pool.
Add Disks	Opens the Add Disks dialog box, which enables you to add cache disks to a storage pool.
Delete	Deletes the selected storage pool.
Refresh	Updates the information in the window.

Storage pools list

Displays the name of the storage pool.
Displays the total cache size of the storage pool.
Displays the available spare cache size of the storage pool.
Displays the percentage of used cache size of the storage pool.

Allocation Unit Displays the minimum allocation unit of the total

cache size that you can use to increase the size of

your storage pool.

Owner Displays the name of the HA pair or the node with

which the storage pool is associated.

State Displays the state of the storage pool, which can be

Normal, Degraded, Creating, Deleting, Reassigning,

or Growing.

Is Healthy Displays whether storage pool is healthy or not.

Details tab

Displays detailed information about the selected storage pool, such as the name, health, storage type, disk count, total cache, spare cache, used cache size (in percent), and allocation unit. The tab also displays the names of the aggregates that are provisioned by the storage pool.

Disks tab

Displays detailed information about the disks in the selected storage pool, such as the names, disk types, useable size, and total size.

Disks

You can use Storage Manager to manage disks.

Reassigning disks to nodes

You can use Storage Manager to reassign the ownership of spare disks from one node to another node to increase the capacity of an aggregate or storage pool.

About this task

- You can reassign disks if the following conditions are true:
 - The container type of the selected disks must be "spare" or "shared".
 - The disks must be connected to nodes in an HA configuration.
 - The disks must be visible to the node.
- You cannot reassign a disk if the following conditions are true:
 - The container type of the selected disk is "shared", and the data partition is not spare.
 - The disk is associated with a storage pool.
- You cannot reassign the data partition of shared disks if storage failover is not enabled on the nodes that are associated with the shared disks.
- For partition disks, you can reassign only the data partition of the disks.
- For MetroCluster configurations, you cannot use Storage Manager to reassign disks.

You must use the command-line interface to reassign disks for MetroCluster configurations.

- Step 1. Click Storage → Aggregates & Disks → Disks.
- Step 2. In the Disks window, select the **Inventory** tab.
- Step 3. Select the disks that you want to reassign, and then click **Assign**.
- Step 4. In the Warning dialog box, click Continue.

- Step 5. In the Assign Disks dialog box, select the node to which you want to reassign the disks.
- Step 6. Click Assign.

Viewing disk information

You can use the Disks window in Storage Manager to view the name, size, and container details of disks along with graphical information about capacity disks and cache disks.

- Step 1. Click Storage → Aggregates & Disks → Disks .
- Step 2. Select the disk that you want to view information about from the displayed list of disks.
- Step 3. Review the disk details.

How ONTAP reports disk types

ONTAP associates a type with every disk. ONTAP reports some disk types differently than the industry standards; you should understand how ONTAP disk types map to industry standards to avoid confusion.

When ONTAP documentation refers to a disk type, it is the type used by ONTAP unless otherwise specified. RAID disk types denote the role that a specific disk plays for RAID. RAID disk types are not related to ONTAP disk types.

For a specific configuration, the disk types that are supported depend on the storage system model, the shelf type, and the I/O modules that are installed in the system.

The following tables show how ONTAP disk types map to industry standard disk types for the SAS and FC storage connection types, and for storage arrays.

SAS-connected storage

ONTAP disk type	Disk class	Industry standard disk type	Description
BSAS	Capacity	SATA	Bridged SAS-SATA disks with added hardware to enable them to be plugged into a SAS- connected storage shelf
FSAS	Capacity	NL-SAS	Near Line SAS
MSATA	Capacity	SATA	SATA disk in multi-disk carrier storage shelf
SAS	Performance	SAS	Serial-Attached SCSI
SSD	Ultra-performance	SSD	Solid-state drives

FC-connected storage

ONTAP disk type	Disk class	Industry standard disk type
ATA	Capacity	SATA
FCAL	Performance	FC

Storage arrays

ONTAP disk type	Disk class	Industry standard disk type	Description
LUN	N/A	LUN	Logical storage device that is backed by storage arrays and used by ONTAP as a disk These LUNs are referred to as array LUNs to distinguish them from the LUNs that ONTAP serves to clients.

Minimum number of hot spares required for disks

Having insufficient spares increases the risk of a disk failure with no available spare, resulting in a degraded RAID group. A spare disk is also required to provide important information (a core file) to technical support in case of a controller disruption.

MSATA disks, or disks in a multi-disk carrier, should have four hot spares during steady state operation, and you should never allow the number of MSATA hot spares to dip below two.

For RAID groups composed of SSDs, you should have at least one spare disk.

For all other ONTAP disk types, you should have at least one matching or appropriate hot spare available for each kind of disk installed in your storage system. However, having two available hot spares for all disks provides the best protection against disk failure. Having at least two available hot spares provides the following benefits:

- When you have two or more hot spares for a data disk, ONTAP can put that disk into the maintenance center if required.
 - ONTAP uses the maintenance center to test suspect disks and to take offline any disk that shows problems.
- Having two hot spares means that when a disk fails, you still have a spare disk available if another disk fails before you replace the first failed disk.

A single spare disk can serve as a hot spare for multiple RAID groups. However, if any disk in those RAID groups fails, then no spare disk is available for any future disk failures or for a core file until the spare disk is replaced. Therefore, it is a best practice to have more than one spare.

Spare requirements for multi-disk carrier disks

Maintaining the proper number of spares for disks in multi-disk carriers is critical for optimizing storage redundancy and minimizing the amount of time that ONTAP must spend copying disks to achieve an optimal disk layout.

You must maintain a minimum of two hot spares for multi-disk carrier disks at all times. To support the use of the Maintenance Center and to avoid issues caused by multiple concurrent disk failures, you should maintain at least four hot spares for steady state operation, and replace failed disks promptly.

If two disks fail at the same time with only two available hot spares, ONTAP might not be able to swap the contents of both the failed disk and its carrier mate to the spare disks. This scenario is called a stalemate. If this happens, you are notified through EMS messages and AutoSupport messages. When the replacement carriers become available, you must follow the instructions that are provided by the EMS messages or you must contact technical support to recover from the stalemate.

Shelf configuration requirements for multi-disk carrier storage shelves

You can combine multi-disk carrier disk shelves with single-disk carrier disk shelves (standard disk shelves) on the same storage system and within in the same stack.

How to determine when it is safe to remove a multi-disk carrier

Removing a multi-disk carrier before it is safe to do so can result in one or more RAID groups becoming degraded, or possibly even a storage disruption. Storage Manager enables you to determine when it is safe to remove a multi-disk carrier.

When a multi-disk carrier has to be replaced, the following events must have occurred before you can remove the carrier safely:

- An AutoSupport message must have been logged indicating that the carrier is ready to be removed.
- An EMS message must have been logged indicating that the carrier is ready to be removed.
- The state of both disks in the carrier must be displayed as broken in the Disks window.

You must remove the disks only after the carrier mate of a failed disk is evacuated. You can click Details to view the disk evacuation status in the Properties tab of the Disks window.

- The fault LED (amber) on the carrier must be lit continuously indicating that it is ready for removal.
- The activity LED (green) must be turned off indicating there is no disk activity.
- The shelf digital display only shows the shelf ID number.

Attention: You cannot reuse the carrier mate of a failed disk. When you remove a multi-disk carrier that contains a failed disk, you must replace it with a new carrier.

Considerations for sizing RAID groups

Configuring an optimum RAID group size requires a trade-off of factors. You must decide which factors—speed of RAID rebuild, assurance against risk of data loss due to drive failure, optimizing I/O performance, and maximizing data storage space—are most important for the aggregate that you are configuring.

When you create larger RAID groups, you maximize the space available for data storage for the same amount of storage used for parity (also known as the "parity tax"). On the other hand, when a disk fails in a larger RAID group, reconstruction time is increased, impacting performance for a longer period of time. In addition, having more disks in a RAID group increases the probability of a multiple disk failure within the same RAID group.

HDD or array LUN RAID groups

You should follow these guidelines when sizing your RAID groups composed of HDDs or array LUNs:

- All RAID groups in an aggregate should have a similar number of disks.
 - The RAID groups do not have to be exactly the same size, but you should avoid having any RAID group that is less than one half the size of other RAID groups in the same aggregate when possible.
- The recommended range of RAID group size is between 12 and 20.
 - The reliability of performance disks can support a RAID group size of up to 28, if needed.
- If you can satisfy the first two guidelines with multiple RAID group sizes, you should choose the larger size.

SSD RAID groups in Flash Pool aggregates

The SSD RAID group size can be different from the RAID group size for the HDD RAID groups in a Flash Pool aggregate. Usually, you should ensure that you have only one SSD RAID group for a Flash Pool aggregate, to minimize the number of SSDs required for parity.

SSD RAID groups in SSD aggregates

You should follow these guidelines when sizing your RAID groups composed of SSDs:

All RAID groups in an aggregate should have a similar number of drives.

The RAID groups do not have to be exactly the same size, but you should avoid having any RAID group that is less than one half the size of other RAID groups in the same aggregate when possible.

• For RAID-DP, the recommended range of RAID group size is between 20 and 28.

Disks window

You can use the Disks window to view all the disks in your storage system.

- "Command buttons" on page 138
- "Summary" on page 138
- "Inventory" on page 138
- "Inventory details area" on page 140

Command buttons

Assign	Assigns or reassigns the ownership of the disks to a node.
	This button is enabled only if the container type of the selected disks is unassigned, spare, or shared.
Zero Spares	Erases all the data, and formats the spare disks and array LUNs.
Refresh	Updates the information in the window.

Tabs

Summary

Displays detailed information about the disks in the cluster, including the size of the spare disks and assigned disks. The tab also graphically displays information about spare disks, aggregates, and root aggregates for HDDs and information about spare disks, disks in a storage pool, aggregates, Flash Pool aggregates, and root aggregates for cache disks (SSDs).

The HDD panel is not displayed for systems with All Flash Optimized personality.

The details panel provides additional information about partitioned and unpartitioned spare disks (disk type, node, disk size, RPM, checksum, number of available disks, and spare capacity), in tabular format.

Inventory

Name	Displays the name of the disk.
Container Type	Displays the purpose for which the disk is used. The possible values are Aggregate, Broken, Foreign, Label Maintenance, Maintenance, Shared, Spare, Unassigned, Volume, Unknown, and Unsupported.
Partition Type	Displays the partition type of the disk.

Node Name Displays the name of the node that contains the

aggregate.

This field is available only at the cluster level.

Home owner Displays the name of the home node to which this

disk is assigned.

Current owner Displays the name of the node that currently owns

this disk.

Root owner Displays the name of the node that currently owns

the root partition of this disk.

Data Owner Displays the name of the node that currently owns

the data partition of this disk.

Data1 Owner Displays the name of the node that currently owns

the data1 partition of the disk.

Data2 Owner Displays the name of the node that currently owns

the data2 partition of the disk.

Storage Pool Displays the name of the storage pool with which

the disk is associated.

Type Displays the type of the disk.

Firmware Version Displays the firmware version of the disk.

Model Displays the model of the disk.

RPM Displays the effective speed of the disk drive when

the option raid.mix.hdd.rpm.capacity is enabled, and displays the actual speed of the disk drive when the option raid.mix.hdd.rpm.capacity is

disabled.

This field is not applicable to SSDs.

Effective Size Displays the usable space available on the disk.

Physical Space Displays the total physical space of the disk.

Shelf Displays the shelf on which the physical disks are

located.

This field is hidden by default.

Bay Displays the bay within the shelf for the physical

disk.

This field is hidden by default.

Pool Displays the name of the pool to which the selected

disk is assigned.

This field is hidden by default.

Checksum Displays the type of the checksum.

This field is hidden by default.

Carrier ID Specifies information about disks that are located

within the specified multi-disk carrier. The ID is a

64-bit value.

This field is hidden by default.

Inventory details area

The area below the inventory tab displays detailed information about the selected disk, including information about the aggregate or volume (if applicable), vendor ID, zeroing state (in percent), serial number of the disk, and error details in case of a broken disk. For shared disks, the Inventory details area displays the names of all the aggregates, including the root and the non-root aggregates.

Array LUNs

You can use Storage Manager to assign array LUNs to an existing aggregate and manage array LUNs.

Assigning array LUNs

You can use Storage Manager to assign unassigned array LUNs to an existing aggregate to increase the size of the aggregate.

About this task

- You can assign array LUNs if the following conditions are true:
 - The container type of the selected array LUNs must be "unassigned".
 - The disks must be connected to nodes in an HA pair.
 - The disks must be visible to the node.
- For MetroCluster configurations, you cannot use Storage Manager to assign array LUNs as spares.

You must use the command-line interface instead.

- Step 1. Click Storage → Aggregates & Disks → Array LUNs.
- Step 2. Select the array LUNs, and then click **Assign**.
- Step 3. In the Assign Array LUNs dialog box, select the node to which you want to assign the array LUNs.
- Step 4. Click Assign.

Reassigning spare array LUNs to nodes

You can use Storage Manager to reassign the ownership of spare array LUNs from one node to another to increase the capacity of an aggregate.

About this task

- You can reassign array LUNs if the following conditions are true:
 - The container type of the selected array LUNs must be "spare".
 - The disks must be connected to nodes in an HA pair.
 - The disks must be visible to the node.
- For MetroCluster configurations, you cannot use Storage Manager to reassign array LUNs as spares.

You must use the command-line interface instead.

- Step 1. Click Storage → Aggregates & Disks → Array LUNs.
- Step 2. Select the spare array LUNs that you want to reassign, and then click Assign .
- Step 3. In the Warning dialog box, click **Continue**.
- Step 4. In the Assign Array LUNs dialog box, select the node to which you want to reassign the spare array LUNs.
- Step 5. Click Assign.

Zeroing spare array LUNs

You can use Storage Manager to erase all the data and to format the spare array LUNs by writing zeros to the array LUNs. These array LUNs can then be used in new aggregates.

About this task

When you zero the spare array LUNs, all the spares in the cluster, including disks, are zeroed. You can zero the spare array LUNs for a specific node or for the entire cluster.

- Step 1. Click Storage → Aggregates & Disks → Array LUNs.
- Step 2. Click Zero Spares.
- Step 3. In the Zero Spares dialog box , select a node or "All nodes " from which you want to zero the array LUNs.
- Step 4. Select the **Zero all non-zeroed spares** check box to confirm the zeroing operation.
- Step 5. Click **Zero Spares**.

About disks and array LUNs

A disk is the basic unit of storage for storage systems that use ONTAP software to access native disk shelves. An array LUN is the basic unit of storage that third-party storage arrays provide to storage systems that run ONTAP software.

ONTAP software enables you to assign ownership to your disks and array LUNs, and to add them to an aggregate. ONTAP software also provides a number of ways to manage your disks, including removing them, replacing them, and sanitizing them. Because array LUNs are provided by the third-party storage array, you use the third-party storage array for all other management tasks for array LUNs.

You can create an aggregate using either disks or array LUNs. After you have created the aggregate, you manage it using ONTAP software in exactly the same way, whether it was created from disks or array LUNs.

Array LUNs window

The Array LUNs window enables you to assign ownership to your array LUNs and to add them to an aggregate.

The Array LUNs link in the left navigation pane is displayed only if there are any spare array LUNs, or if the V_StorageAttach license is installed.

- "Command buttons" on page 142
- "Array LUN list" on page 142
- " Details area" on page 142

Command buttons

Enables you to assign or reassign the ownership of Assign

array LUNs to a node.

Zero Spares Erases all the data, and formats the spare array

LUNs and disks.

Refresh Updates the information in the window.

Array LUN list

Displays information such as the name, state, and vendor for each array LUN.

Name Specifies the name of the array LUN.

State Specifies the state of the array LUN.

Vendor Specifies the name of the vendor.

Used Space Specifies the space used by the array LUN.

Total Size Specifies the size of the array LUN.

Container Specifies the aggregate to which the array LUN

belongs.

Node name Specifies the name of the node to which the array

LUN belongs.

Home owner Displays the name of the home node to which the

array LUN is assigned.

Current owner Displays the name of the node that currently owns

the array LUN.

Array name Specifies the name of the array.

Pool Displays the name of the pool to which the selected

array LUN is assigned.

Details area

The area below the Array LUNs list displays detailed information about the selected array LUN.

Nodes

You can use Storage Manager to view the details of the nodes in the cluster.

Initializing the ComplianceClock time

You can use Storage Manager to initialize the ComplianceClock time to the current cluster time. You must initialize the ComplianceClock time in order to create SnapLock aggregates.

Before you begin

The SnapLock license must be installed.

About this task

You cannot modify or stop the ComplianceClock time after it is initialized.

- Step 1. Click Storage → Nodes.
- Step 2. Select the node, and then click **Initialize ComplianceClock** .
- Step 3. In the Initialize ComplianceClock dialog box, click **Yes** to initialize the ComplianceClock time to the current cluster time.

Nodes window

You can use the Nodes window to view the details of the nodes in a cluster.

- "Command buttons" on page 143
- "Nodes list" on page 143

Command buttons

Initialize ComplianceClock Initializes the ComplianceClock of the selected

node to the current value of the system clock.

Refresh Updates the information in the window.

Nodes list

Name Displays the name of the node.

State Displays the state of the node (whether the node is

up or down).

Up Time Displays the duration for which the node is up.

ONTAP Version Displays the ONTAP version that is installed on the

node.

Model Displays the platform model number of the node.

System ID Displays the ID of the node.

Serial No Displays the serial number of the node.

All Flash Optimized Displays whether the node has an All Flash

Optimized personality.

Details area

Displays detailed information about the selected node.

Details tab Displays information related to the selected node

such as the name of the node, the state of the node,

and the duration for which the node is up.

Performance tab Displays the throughput, IOPS, and latency of the

selected node.

Changing the client time zone or the cluster time zone impacts the performance metrics graphs. You should refresh your browser to view the updated

graphs.

Flash Cache

You can use Storage Manager to manage Flash Cache.

Enabling or disabling Flash Cache

You can enable or disable the WAFL external cache functionality for a storage system that has a PAM II card or Flash Cache module installed by using Storage Manager . You can enable Flash Cache based on the workload requirements of your storage system.

- Click Configuration → Flash Cache Module . Step 1.
- Step 2. Select the node.
- Step 3. Click **Enable** or **Disable**, as required.

How Flash Cache works

Using Flash Caches improves the performance of a storage system.

You can configure Flash Cache and disks based on the workload requirements of a storage system. By determining the read workload (number of read operations) served by Flash Cache and disks, you can analyze the performance of the storage system.

Flash Cache does not contain any data during storage system boot or when control is returned to the storage system after a takeover event. Therefore, disks serve all the data read requests of the storage system.

The Flash Cache module is slowly populated with data when data read requests are served. Because the data read requests served by Flash Cache are faster than those served by the disks, the performance of the storage system improves.

Data read requests served by the Flash Cache module replace the data read requests served by the disks and, therefore, the performance improvement in the storage system is directly related to the disk reads that are replaced. To understand the impact of Flash Cache on storage system performance, you must view the read workload graph when the Flash Cache contains data.

Flash Cache window

You can use the Flash Cache window to enable or disable Flash Cache for a storage system that has a Flash Cache module installed. You can also view the read workload statistics.

This Flash Cache window is not available for a cluster containing nodes with All Flash Optimized personality.

Command buttons

Enable/Disable

Enables or disables Flash Cache.

Flash Cache Read Workload

Displays a graph specifying the rate of the read workload that is served by the disks and the Flash Cache module, which indicates the performance of the storage system.

Details area

Displays information about the system read latency (in seconds), the caching mode that specifies the caching configuration, the state of Flash Cache (enabled or disabled), and the size of the Flash Cache (in GB). If there are multiple Flash Cache cards, the total cache size from all of the cards is displayed.

Notes: The Flash Cache size that is displayed differs from the actual Flash cache size for the following reasons:

- Storage Manager reports only the usable capacity that is provided by ONTAP.
- A portion of the total SSD capacity is reserved for storing metadata.

Events

You can use Storage Manager to view the event log and event notifications.

Events window

You can use the Events window to view the event log and event notifications.

Command buttons

Refresh Updates the information in the window.

Events list

Severity

Time Displays the time when the event occurred.

Node Displays the node and the cluster on which the event occurred.

Displays the severity of the event. The possible severity levels are:

Emergency

Specifies that the event source unexpectedly stopped, and the system experienced unrecoverable data loss. You must take corrective action immediately to avoid extended downtime.

Alert

Specifies that the event source has an alert, and action must be taken to avoid downtime.

Critical

Specifies that the event source is critical, and might lead to service disruption if corrective action is not taken immediately.

Error

Specifies that the event source is still performing, and a corrective action is required to avoid service disruption.

Warning

Specifies that the event source experienced an occurrence that you must be aware of. Events of this severity might not cause service disruption; however, corrective action might be required.

Notice

Specifies that the event source is normal, but the severity is a significant condition that you must be aware of.

Informational

Specifies that the event source has an occurrence that you must be aware of. No corrective action might be required.

Debug

Specifies that the event source includes a debugging message.

By default, the alert severity type, emergency severity type, and the error severity type are displayed.

Source Displays the source of the event.

Event Displays the description of the event.

Details area

Displays the event details, including the event description, message name, sequence number, message description, and corrective action for the selected event.

System alerts

You can use Storage Manager to monitor different parts of a cluster.

Acknowledging system health alerts

You can use Storage Manager to acknowledge and respond to system health alerts for subsystems. You can use the information displayed to take the recommended action and correct the problem reported by the alert.

- Step 1. Click Events & Jobs → System Alerts.
- Step 2. In the System Alerts window, click the arrow icon next to the name of subsystem.
- Step 3. Select the alert that you want to acknowledge, and then click Acknowledge.
- Step 4. Type your name, and then click **Acknowledge** .

Suppressing system health alerts

You can use Storage Manager to suppress system health alerts that do not require any intervention from you.

- Step 1. Click Events & Jobs → System Alerts.
- Step 2. In the System Alerts window, click the arrow icon next to the name of subsystem.
- Step 3. Select the alert that you want to suppress, and then click **Suppress**.
- Step 4. Type your name, and then click **Suppress**.

Deleting system health alerts

You can use Storage Manager to delete system health alerts to which you have already responded.

Step 1. Click Events & Jobs → System Alerts.

- Step 2. In the System Alerts window, click the arrow icon next to the name of subsystem.
- Step 3. Select the alert that you want to delete, and then click **Delete**.
- Step 4. Click OK.

Available cluster health monitors

There are several health monitors that monitor different parts of a cluster . Health monitors help you to recover from errors within ONTAP systems by detecting events, sending alerts to you, and deleting events as they clear.

Health monitor name (identifier)	Subsystem name (identifier)	Purpose
Cluster switch (cluster-switch)	Switch (Switch- Health)	Monitors cluster network switches and management network switches for temperature, utilization, interface configuration, redundancy (cluster network switches only), and fan and power supply operation. The cluster switch health monitor communicates with switches through SNMP. SNMPv2c is the default setting.
MetroCluster Fabric	Switch	Monitors the MetroCluster configuration back-end fabric topology and detects misconfigurations such as incorrect cabling and zoning, and ISL failures.
MetroCluster Health	Interconnect, RAID, and storage	Monitors FC-VI adapters, FC initiator adapters, left-behind aggregates and disks, and inter-cluster ports
Node connectivity (node-connect)	CIFS nondisruptive operations (CIFS- NDO)	Monitors SMB connections for nondisruptive operations to Hyper-V applications.
	Storage (SAS- connect)	Monitors shelves, disks, and adapters at the node level for appropriate paths and connections.
System	not applicable	Aggregates information from other health monitors.
System connectivity (system-connect)	Storage (SAS- connect)	Monitors shelves at the cluster level for appropriate paths to two HA clustered nodes.

Ways to respond to system health alerts

When a system health alert occurs, you can acknowledge it, learn more about it, repair the underlying condition, and prevent it from occurring again.

When a health monitor raises an alert, you can respond in any of the following ways:

- Get information about the alert, which includes the affected resource, alert severity, probable cause, possible effect, and corrective actions.
- Get detailed information about the alert, such as the time when the alert was raised and whether anyone else has acknowledged the alert already.
- Get health-related information about the state of the affected resource or subsystem, such as a specific shelf or disk.
- Acknowledge the alert to indicate that someone is working on the problem, and identify yourself as the " Acknowledger."
- Resolve the problem by taking the corrective actions provided in the alert, such as fixing cabling to resolve a connectivity problem.

- Delete the alert, if the system did not automatically clear it.
- Suppress an alert to prevent it from affecting the health status of a subsystem.

Suppressing is useful when you understand a problem. After you suppress an alert, it can still occur, but the subsystem health displays as "ok-with-suppressed." when the suppressed alert occurs.

System Alerts window

You can use the System Alerts window to learn more about system health alerts. You can also acknowledge, delete, and suppress alerts from the window.

Command buttons

Acknowledge Enables you to acknowledge the selected alert to

indicate that the problem is being addressed and identifies the person who clicks the button as the "

Acknowledger."

Suppress Enables you to suppress the selected alert to

prevent the system from notifying you about the same alert again and identifies you as the "

Suppressor. "

Delete Deletes the selected alert.

Refresh Updates the information in the window.

Alerts list

SubSystem (No. of Alerts)

Displays the name of the subsystem, such as the

SAS connection, switch health, CIFS NDO, or MetroCluster, for which the alert is generated.

Alert ID Displays the alert ID.

Node Displays the name of the node for which the alert is

generated.

Severity Displays the severity of the alert as Unknown,

Other, Information, Degraded, Minor, Major, Critical,

or Fatal.

Resource Displays the resource that generated the alert, such

as a specific shelf or disk.

Time Displays the time when the alert was generated.

Details area

The details area displays detailed information about the alert, such as the time when the alert was generated and whether the alert has been acknowledged. The area also includes information about the probable cause and possible effect of the condition generated by the alert, and the recommended actions to correct the problem reported by the alert.

AutoSupport notifications

You can use Storage Manager to configure AutoSupport notifications that help you to monitor your storage system health.

Setting up AutoSupport notifications

You can use the Edit AutoSupport Settings dialog box in Storage Manager to set up AutoSupport notifications by specifying an email address from which email notifications are sent and adding multiple email host names.

- Step 1. Click ♣ → AutoSupport.
- Step 2. Select the node, and then click Edit.
- Step 3. In the **Email Recipient** tab, type the email address from which email notifications are sent, specify the email recipients and the message content for each email recipient, and add the mail hosts. You can add up to five email addresses of the host names.
- Step 4. In the **Others** tab, select a transport protocol for delivering the email messages from the drop-down list and specify the HTTP or HTTPS proxy server details.
- Step 5. Click OK.
- Step 6. Verify that configuration you have set for AutoSupport notification is set up correctly in the AutoSupport window .

Enabling or disabling AutoSupport settings

You can enable or disable AutoSupport settings on your storage system by using Storage Manager. AutoSupport messages enable you to monitor your storage system health or send notifications to technical support and your internal support organization.

About this task

The AutoSupport option is disabled by default.

- Step 1. Click AutoSupport .
- Step 2. Select the node, and then click Enable or Disable .
- Step 3. Click OK.
- Step 4. Verify that the AutoSupport status correctly displays the change you made.

Adding AutoSupport email recipients

You can use the **Email Recipient** tab of the Edit AutoSupport Settings dialog box in Storage Manager to add email addresses of the recipients of AutoSupport notifications.

- Step 1. Click ♣ → AutoSupport.
- Step 2. Select the node, and then click Edit .
- Step 3. In the **Email Recipient** tab, type the address of the email recipient, specify whether the recipient receives a full message or a short message, and then click **Add**.
- Step 4. Click OK.
- Step 5. Verify that the details you specified are displayed in the AutoSupport window.

Testing AutoSupport settings

You can use the AutoSupport Test dialog box in Storage Manager to test that you have configured the AutoSupport settings correctly.

- Step 1. Click ♣ → AutoSupport.
- Step 2. Select the node, and then click **Test**.

- Step 3. In the AutoSupport Test dialog box, enter the AutoSupport subject text "Test AutoSupport" or any text that notifies the recipients that you are testing the AutoSupport settings.
- Step 4. Click **Test**.

An email message with the subject "Test AutoSupport" or the text that you typed in the **AutoSupport subject** field is sent to the specified recipients.

Generating AutoSupport data

You can use Storage Manager to generate AutoSupport data for a single node or multiple nodes to monitor their health and to send notifications to technical support.

- Step 1. Click ♣ → AutoSupport.
- Step 2. Select the node, and then click **AutoSupport Request** → **Generate AutoSupport** . By default, the AutoSupport data is generated for all nodes.
- Step 3. In the Generate AutoSupport dialog box, perform the following steps:
 - If you want to generate AutoSupport data for a specific node, clear the Generate Autosupport data for all nodes check box, and then select the node.
 - b. Type the case number.
- Step 4. Click **Generate**.
- Step 5. In the Confirmation dialog box, click OK.

Viewing AutoSupport summary

Storage Manager enables you to view the status and details of all the previous AutoSupport data in order to review the data that has been sent to technical support. You can also view the information to understand the health and performance of your storage system.

- Step 1. Click ♣ → AutoSupport.
- Step 2. Select the node, and then click **AutoSupport Request** → **View Previous Summary** . The AutoSupport data for all the nodes is displayed.
- Step 3. Click OK.

AutoSupport severity types

AutoSupport messages have severity types that help you understand the purpose of each message—for example, to draw immediate attention to an emergency problem, or only to provide information.

Messages have one of the following severities:

- **Alert**: Alert messages indicate that a next-higher level event might occur if you do not take some action. You must take an action against alert messages within 24 hours.
- **Emergency**: Emergency messages are displayed when a disruption has occurred. You must take an action against emergency messages immediately.
- **Error**: Error conditions indicate what might happen if you ignore.
- Notice: Normal but significant condition.
- Info: Informational message provides details about the issue, which you can ignore.
- Debug: Debug-level messages provide instructions you should perform.

If your internal support organization receives AutoSupport messages through email, the severity appears in the subject line of the email message.

AutoSupport window

The AutoSupport window enables you to view the current AutoSupport settings for your system. You can also change your system's AutoSupport settings.

Command buttons

Enable Enables AutoSupport notification.

Disable Disables AutoSupport notification.

Edit Opens the Edit AutoSupport Settings dialog box,

which enables you to specify an email address from which email notifications are sent and to add multiple email addresses of the host names.

Test Opens the AutoSupport Test dialog box, which

enables you to generate an AutoSupport test

message.

AutoSupport Request Provides the following AutoSupport requests:

Generate AutoSupport Generates AutoSupport

data for a selected node or all nodes.

View Previous Displays the status and

Summary details of all the

previous AutoSupport

data.

Refresh Updates the information in the window.

Details area

The details area displays AutoSupport setting information such as the node name, AutoSupport status, transport protocol used, and name of the proxy server.

Jobs

You can use Storage Manager to manage job tasks such as displaying job information and monitoring the progress of a job.

Jobs

Jobs are asynchronous task and typically long-running volume operations, such as copying, moving, or mirroring data. Jobs are placed in a job queue and are run when resources are available. The cluster administrator can perform all the tasks related to job management.

A job can be one of the following categories:

- A server-affiliated job is placed in queue by the management framework to be run in a specific node.
- A cluster-affiliated job is placed in queue by the management framework to be run in any node in the cluster.
- A private job is specific to a node and does not use the replicated database (RDB) or any other cluster mechanism.

You require the advanced privilege level or higher to run the commands to manage private jobs.

You can manage jobs in the following ways:

- Displaying job information, including the following:
 - Jobs on a per-node basis
 - Cluster-affiliated jobs
 - Completed jobs
 - Job history
- Monitoring a job's progress
- Displaying information about the initialization state for job managers.

You can determine the outcome of a completed job by checking the event log.

Job window

You can use the Job window to manage job tasks such as displaying job information and monitoring the progress of a job.

Command button

Refresh Updates the information in the window.

Tabs

Current Jobs This tab displays information about the job tasks

that are in progress.

Job History This tab displays information about all the jobs.

Job list

Job ID Displays the ID of the job.

Start Time Displays the start time of the job.

Job Name Displays the name of the job.

Node Displays the name of the node.

State Displays the state of the job.

Job Description Displays the description of the job.

Progress Displays the state of the job.

Schedule Name Displays the name of the schedule.

Flash Pool statistics

You can use Storage Manager to view the real-time SSD tier read and write workloads for a selected Flash Pool aggregate.

Flash Pool aggregate Statistics window

You can view the real-time SSD tier read and write workloads for a selected Flash Pool aggregate.

This page is not available for a cluster containing nodes with All Flash Optimized personality.

Displaying Statistics for Flash Pool aggregate

From the list of Flash Pool aggregates, you can select the Flash Pool aggregate whose statistics you want to view.

SSD Cache Read Workload

Displays a graphical view of the total read requests that are sent to the Flash Pool aggregate in comparison with the read operations that are performed by the SSD tier.

SSD Cache Write Workload

Displays a graphical view of the total write requests that are sent to the Flash Pool aggregate in comparison with the write operations that are performed by the SSD tier.

Chapter 11. Managing logical storage

You can use Storage Manager to manage the logical storage such as storage virtual machines (SVMs), volumes, Qtrees, protocols, policies and so on.

Storage Virtual Machines

You can use Storage Manager to manage the SVMs in your cluster.

SVM Dashboard window

The dashboard provides a cumulative at-a-glance information about your storage virtual machine (SVM) and its performance. You can use the Dashboard window to view important information related to your SVM such as the protocols configured, the volumes that are nearing capacity, and the performance.

SVM Details

This window displays details about the SVM through various panels such as the Protocol Status panel, Volumes Nearing Capacity panel, Applications panel, and SVM performance panel.

Protocol Status

Provides an overview of the protocols that are configured for the SVM. Yon can click the protocol name to view the configuration.

If a protocol is not configured or if a protocol license is not available for the SVM, you can click the protocol name to configure the protocol or to add the protocol license.

Volumes Nearing Capacity

Displays information about the volumes that are nearing capacity utilization of 80 percent or more, and that therefore require immediate attention or corrective action.

© Copyright Lenovo 2018, 2023 155

Applications

Displays information about the top five applications of the SVM . You can view the top five applications based on either IOPS (from low to high or from high to low) or capacity (from low to high or from high to low). You must click the specific bar chart to view more information about the application. For capacity, the total space, used space, and available space are displayed, and for IOPS, the IOPS details are displayed.

Note: The used size displayed in the Applications on SVM window does not equal the used size in the CLI.

You can click **View details** to open the Applications window of the specific application. You can click **View all applications** to view all of the applications for the SVM.

The refresh interval for the Applications panel is one minute.

Displays the performance metrics of the protocols in the SVM , including latency and IOPS.

If the information about SVM performance cannot be retrieved from ONTAP, you cannot view the respective graph. In such cases, Storage Manager displays the specific error message.

The refresh interval for the SVM Performance panel is 15 seconds.

Monitoring SVMs

SVM Performance

The dashboard in Storage Manager enables you to monitor the health and performance of a storage virtual machine (SVM) .

- Step 1. Click Storage → SVMs.
- Step 2. Click on the SVM that you want to monitor.
- Step 3. View the details in the dashboard panels.

Editing SVM settings

You can use Storage Manager to edit the properties of storage virtual machines (SVMs), such as the name service switch, name mapping switch, and aggregate list.

About this task

- You can edit the values of the following SVM properties:
 - Name service switch
 - Protocols that are enabled to serve data

Note: The CIFS protocol that is configured on the SVM continues to serve data even when you disable the protocol on that SVM .

The list of aggregates that are available to create volumes

If you do not specify the aggregates for SVMs with Infinite Volume, the Infinite Volume spans across all of the aggregates in the cluster.

Note: For FlexVol volumes, you can assign aggregates only if you have delegated administration to an SVM administrator.

Storage Manager does not display the values of the name service switch and the name mapping switch
for an SVM that is created through the command-line interface, or whose services are not configured and
are not set to the default values by ONTAP. You can use the command-line interface to view the services
because the Services tab is disabled.

Storage Manager displays the name service switch and the name mapping switch of an SVM only when it is created by using Storage Manager or when the services of the SVM are set to the default values by ONTAP.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click SVM Settings.
- Step 3. In the **Details** tab, modify the required data protocols.
- Step 4. In the Resource Allocation tab, choose one of the following methods to delegate volume creation:

If you want to provision volume creation	Then
For all aggregates	Select the Do not delegate volume creation option.
For specific aggregates	Select the Delegate volume creation option.
	Select the required aggregates for delegating volume creation.

Step 5. In the **Service** tab, specify the name service switch sources for the required database types and the order in which they should be consulted to retrieve name service information.

The default values for each of the database types are as follows:

hosts: files, dns

· namemap: files

group: files

· netgroup: files

passwd: files

Step 6. Click Save and Close.

Deleting SVMs

You can use Storage Manager to delete storage virtual machines (SVMs) that you no longer require from the storage system configuration.

Before you begin

You must have completed the following tasks:

1. Disabled the Snapshot copies, data protection (DP) mirrors, and load-sharing (LS) mirrors for all the volumes

Note: You must use the command-line interface (CLI) to disable LS mirrors.

- 2. Deleted all the igroups that belong to the SVM manually if you are deleting SVMs
- 3. Deleted all the portsets
- 4. Deleted all the volumes in the SVM, including the root volume
- 5. Unmapped the LUNs, taken them offline, and deleted them
- 6. Deleted the CIFS server if you are deleting SVMs
- 7. Deleted any customized user accounts and roles that are associated with the SVM
- 8. Deleted any NVMe subsystems associated with the SVM using the CLI
- 9. Stopped the SVM

About this task

When you delete SVMs, the following objects associated with the SVM are also deleted:

- · LIFs, LIF failover groups, and LIF routing groups
- Export policies
- · Efficiency policies

If you delete SVMs that are configured to use Kerberos, or modify SVMs to use a different Service Principal Name (SPN), the original service principal of the SVM is not automatically deleted or disabled from the Kerberos realm. You must manually delete or disable the principal. You must have the Kerberos realm administrator's user name and password to delete or disable the principal.

If you want to move data from an SVM to another SVM before you delete the first SVM, you can use the SnapMirror technology to do so.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM that you want to delete, and then click **Delete**.
- Step 3. Select the confirmation check box, and then click **Delete**.

Starting SVMs

You can use Storage Manager to provide data access from a storage virtual machine (SVM) by starting the SVM.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM that you want to start, and then click **Start**.

Result

The SVM starts serving data to clients.

Stopping SVMs

You can use Storage Manager to stop a storage virtual machine (SVM) if you want to troubleshoot any issue with the SVM, delete the SVM, or stop data access from the SVM.

Before you begin

All the clients connected to the SVM must be disconnected.

Attention: If any clients are connected to the SVM when you stop it, data loss might occur.

About this task

- You cannot stop SVMs during storage failover (SFO).
- When you stop the SVM, an SVM administrator cannot log in to the SVM.
- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM that you want to stop, and then click **Stop**.

Result

The SVM stops serving data to clients.

Managing SVMs

storage virtual machine (SVM) administrators can administer SVMs and its resources, such as volumes, protocols, and services, depending on the capabilities assigned by the cluster administrator. SVM administrators cannot create, modify, or delete SVMs.

Note: SVM administrators cannot log in to Storage Manager.

SVM administrators might have all or some of the following administration capabilities:

Data access protocol configuration

SVM administrators can configure data access protocols, such as NFS, CIFS, iSCSI, and Fibre Channel (FC) protocol (Fibre Channel over Ethernet or FCoE included).

• Services configuration

SVM administrators can configure services such as LDAP, NIS, and DNS.

Storage management

SVM administrators can manage volumes, quotas, qtrees, and files.

- LUN management in a SAN environment
- Management of Snapshot copies of the volume
- Monitoring SVM

SVM administrators can monitor jobs, network connection, network interface, and the SVM health.

Types of SVMs

A cluster consists of four types of SVMs, which help in managing the cluster and its resources and data access to the clients and applications.

A cluster contains the following types of SVMs:

Admin SVM

The cluster setup process automatically creates the admin SVM for the cluster. The admin SVM represents the cluster.

Node SVM

A node SVM is created when the node joins the cluster, and the node SVM represents the individual nodes of the cluster.

System SVM (advanced)

A system SVM is automatically created for cluster-level communications in an IPspace.

Data SVM

A data SVM represents the data serving SVMs. After the cluster setup, a cluster administrator must create data SVMs and add volumes to these SVMs to facilitate data access from the cluster.

A cluster must have at least one data SVM to serve data to its clients.

Note: Unless otherwise specified, the term SVM refers to data (data-serving) SVM, which applies to both SVMs and SVMs with Infinite Volume. In the CLI, SVMs are displayed as Vservers.

Why you use SVMs

SVMs provide data access to clients regardless of the physical storage or controller, similar to any storage system. SVMs provide benefits such as nondisruptive operations, scalability, security, and unified storage.

SVMs provide the following benefits:

Multi-tenancy

SVM is the fundamental unit of secure multi-tenancy, which enables partitioning of the storage infrastructure so that it appears as multiple independent storage systems. These partitions isolate the data and management.

Nondisruptive operations

SVMs can operate continuously and nondisruptively for as long as they are needed. SVMs help clusters to operate continuously during software and hardware upgrades, addition and removal of nodes, and all administrative operations.

Scalability

SVMs meet on-demand data throughput and the other storage requirements.

Security

Each SVM appears as a single independent server, which enables multiple SVMs to coexist in a cluster while ensuring no data flows among them.

Unified storage

SVMs can serve data concurrently through multiple data access protocols. SVMs provide file-level data access through NAS protocols, such as CIFS and NFS, and block-level data access through SAN protocols, such as iSCSI, FC/FCoE, and NVMe. SVMs can serve data to SAN and NAS clients independently at the same time.

Note: SVMs with Infinite Volume can serve data only through NFS and CIFS protocols.

Delegation of management

SVM administrators have privileges assigned by the cluster administrator.

Easy management of large datasets

With SVMs with Infinite Volume, management of large and unstructured data is easier because the SVM administrator can manage one data container instead of many.

How ONTAP name service switch configuration works

ONTAP stores name service configuration information in a table that is the equivalent of the /etc/nsswitch. conf file on UNIX systems. You must understand the function of the table and how ONTAP uses it so that you can configure it appropriately for your environment.

The ONTAP name service switch table determines which name service sources ONTAP consults in which order to retrieve information for a certain type of name service information. ONTAP maintains a separate name service switch table for each SVM.

Database types

The table stores a separate name service list for each of the following database types:

Database type	Defines name service sources for	Valid sources are
hosts	Converting host names to IP addresses	files, dns
group	Looking up user group information	files, nis, Idap
passwd	Looking up user information	files, nis, Idap
netgroup	Looking up netgroup information	files, nis, Idap
namemap	Mapping user names	files, Idap

Source types

The sources specify which name service source to use for retrieving the appropriate information.

Specify source type	To look up information in	Managed by the command families
files	Local source files	vserver services name-service unix- user vserver services name-service unix- group vserver services name-service netgroup vserver services name-service dns hosts
nis	External NIS servers as specified in the NIS domain configuration of the SVM	vserver services name-service nis- domain
ldap	External LDAP servers as specified in the LDAP client configuration of the SVM	vserver services name-service ldap
dns	External DNS servers as specified in the DNS configuration of the SVM	vserver services name-service dns

Even if you plan to use NIS or LDAP for both data access and SVM administration authentication, you should still include files and configure local users as a fallback in case NIS or LDAP authentication fails.

Storage Virtual Machines window

You can use the Storage Virtual Machines window to manage your storage virtual machines (SVMs) and display information about them.

You cannot manage (create, edit, delete, start, or stop) an SVM configured for disaster recovery (DR) by using Storage Manager. Also, you cannot view the storage objects associated with the SVM configured for disaster recovery in the application interface.

Command buttons

Create Opens the Storage Virtual Machine (SVM) Setup

wizard, which enables you to create a new SVM.

Edit Opens the Edit Storage Virtual Machine dialog box,

> which enables you to modify the properties, such as the name service switch, name mapping switch,

and aggregate list, of a selected SVM.

Delete Deletes the selected SVMs. Start Starts the selected SVM. Stop Stops the selected SVM.

Manage Manages the storage, policies, and configuration for

the selected SVM.

Refresh Updates the information in the window.

SVM list

The SVM list displays the name of each SVM and the allowed protocols on it.

You can view only data SVMs by using Storage Manager.

Name Displays the name of the SVM.

State Displays the SVM state, such as Running, Starting,

Stopped, or Stopping.

Subtype Displays the subtype of the SVM, which can be one

of the following:

default

Specifies that the SVM is a data-serving SVM.

dp-destination

Specifies that the SVM is configured for disaster recovery.

sync-source

Specifies that the SVM is in the primary site of a

MetroCluster configuration.

sync-destination

Specifies that the SVM is in the surviving site of a

MetroCluster configuration.

Allowed Protocols Displays the allowed protocols, such as CIFS and

NFS, on each SVM.

IPspace Displays the IPspace of the associated SVM.

Volume Type Displays the allowed volume type, such as FlexVol

volume and Infinite Volume, on each SVM.

Configuration State Displays whether the configuration state of the SVM

is locked or unlocked.

Details area

The area below the SVM list displays detailed information, such as the type of volumes allowed, language, and Snapshot policy, about the selected SVM.

You can also configure the protocols that are allowed on this SVM. If you have not configured the protocols while creating the SVM, you can click the protocol link to configure the protocol.

You cannot configure protocols for an SVM configured for disaster recovery by using Storage Manager.

Note: If the FCP service is already started for the SVM, clicking the FC/FCoE link opens the Network Interfaces window .

The color indicates the status of the protocol configuration:

Status	Description
Green	LIFs exist and the protocol is configured. You can click the link to view the configuration details.
	Note: Configuration might be partially completed. However, service is running. You can create the LIFs and complete the configuration from the Network Interfaces window.
Yellow	Indicates one of the following:
	LIFs exist. Service is created but is not running.
	LIFs exist. Service is not created.
	Service is created. LIFs do not exist.
Grey	The protocol is not configured. You can click the protocol link to configure the protocol.
Grey border	The protocol license has expired or is missing. You can click the protocol link to add the licenses in the Licenses page.

Peer Storage Virtual Machines area

Displays a list of the SVMs that are peered with the selected SVM along with details of the applications that are using the peer relationship.

Volumes

You can use Storage Manager to create, edit, and delete volumes.

You can access all the volumes in the cluster by using the Volumes tab or you can access the volumes specific to an SVM by using $SVMs \rightarrow Volumes$.

Note: The Volumes tab is displayed only if you have enabled the CIFS and NFS licenses.

Editing volume properties

You can modify volume properties such as the volume name, security style, fractional reserve, and space guarantee by using Storage Manager. You can modify storage efficiency settings (deduplication schedule, deduplication policy, and compression) and space reclamation settings. You can also edit the export policy and incremental tape backup settings of Infinite Volumes.

About this task

- You can set the fractional reserve to either zero percent or 100 percent.
- Data compression is not supported on 32-bit volumes.
- You cannot modify the security style of an Infinite Volume.
- For Data ONTAP 8.3.1 clusters, you can enable both inline compression and background compression for Cloud Volumes ONTAP for AWS (AWS).

Compression is not supported for Data ONTAP Edge.

- You cannot use Storage Manager to modify the following properties of Infinite Volumes with storage classes:
 - SnapDiff settings
 - Storage efficiency settings
 - Space guarantee settings
- You cannot rename a SnapLock Compliance volume.
- Step 1. Click Storage → Volumes.
- Step 2. From the Volumes on SVM list, select the storage virtual machine (SVM) in which the volume that you want to edit resides.
- Step 3. Select the volume that you want to modify, and then click **Edit** . The Edit Volume dialog box is displayed.
- Step 4. In the **General** tab, modify the following properties as required:
 - Volume name
 - Security style for the volume
 - Thin provisioning
- Step 5. Click the **Storage Efficiency** tab, and enable storage efficiency by configuring the following properties:
 - Deduplication
 - Data compression

You cannot enable background compression for a volume that is contained by an aggregate with All Flash Optimized personality . You can enable only inline compression for these volumes.

You can enable inline deduplication only on a volume that is contained by an aggregate with All Flash Optimized personality or on a volume in a Flash Pool aggregate.

- Step 6. For SnapLock volumes, click the **SnapLock** tab, and perform the following steps:
 - Specify the autocommit period.
 The autocommit period determines how long a file in the volume must remain unchanged before the file is committed to WORM state.
 - b. Specify the minimum retention period and maximum retention period. The values must be in the range of 1 day through 70 years or Infinite.
 - Select the default retention period.
 The default retention period must be within the specified minimum retention period and maximum retention period.
- Step 7. Click the **Advanced** tab, and enable the following properties:

If you want the volume to automatically grow when the used space in the volume is above the grow threshold, select ${\bf Grow}$.

If you want the volume to grow or shrink in size in response to the amount of used space, select **Grow or Shrink**.

- Specify the maximum size to which the volume can grow.
- Enable automatic deletion of older Snapshot copies by choosing one of the following options:
 - Try

Deletes the Snapshot copies that are not locked by any other subsystems.

Destroy

Deletes the Snapshot copies that are locked by the data-backing functionality.

Disrupt

Deletes the Snapshot copies that can disrupt the data transfer.

Select the caching policy that you want to assign to the volume.

This option is available only for FlexVol volumes in a Flash Pool aggregate .

• Select the retention priority for cached data in the volume.

This option is available only for FlexVol volumes in a Flash Pool aggregate.

- Specify the fractional reserve that you want to set for the volume.
- · Update the access time for reading the file.

This option is disabled for SnapLock volumes.

Step 8. Click Save and Close.

Editing data protection volumes

You can use Storage Manager to modify the volume name for a data protection (DP) volume. If the source volume does not have storage efficiency enabled, you might want to enable storage efficiency only on the destination volume.

About this task

You cannot modify storage efficiency on a mirror DP volume.

- Step 1. Click Storage → Volumes.
- Step 2. From the Volumes on SVM list, select the storage virtual machine (SVM) in which the DP volume that you want to edit resides.
- Step 3. Select the volume that you want to modify, and then click **Edit** .
- Step 4. In the Edit Data Protection Volume dialog box, modify the volume name.
- Step 5. Select Enable Storage Efficiency.

If storage efficiency is already enabled on the volume, then the check box is selected by default.

- Step 6. Optional: Click the **Advanced** tab, and perform the following steps:
 - a. Select the caching policy that you want to assign to the volume.
 - b. Select the retention priority for the cached data in the volume.

These options are available only for data protection FlexVol volumes in a Flash Pool aggregate.

Step 7. Click Save.

Deleting volumes

You can use Storage Manager to delete a FlexVol volume or an Infinite Volume when you no longer require the data that a volume contains, or if you have copied the data that a volume contains to another location. When you delete a volume, all the data in the volume is destroyed, and you cannot recover this data.

Before you begin

- If the FlexVol volume is cloned, the FlexClone volumes must be either split from the parent volume or destroyed.
- The volume must be unmounted and must be in the offline state.
- If the volume is in one or more SnapMirror relationships, the SnapMirror relationships must be deleted.
- You can delete a complete SnapLock Enterprise volume or a file in a SnapLock Enterprise volume; however, you cannot delete only the data within a file in a SnapLock Enterprise volume.
- You cannot delete a SnapLock Compliance volume if data is committed to the volume.
- Step 1. Click Storage → Volumes.
- Step 2. From the Volumes on SVM list, select the storage virtual machine (SVM) in which the volume that you want to delete resides.
- Step 3. Select the volumes that you want to delete, and then click **Delete**.
- Step 4. Select the confirmation check box, and then click **Delete**.

Creating FlexClone volumes

You can use Storage Manager to create a FlexClone volume when you require a writable, point-in-time copy of an existing FlexVol volume. You might want to create a copy of a volume for testing or to provide access to the volume for additional users without giving them access to the production data.

Before you begin

- The FlexClone license must be installed on the storage system.
- The volume that you want to clone must be online and must be a non-root volume.

About this task

The base Snapshot copy that is used to create a FlexClone volume of a SnapMirror destination is marked as busy and cannot be deleted. If a FlexClone volume is created from a Snapshot copy that is not the most recent Snapshot copy, and that Snapshot copy no longer exists on the source volume, all SnapMirror updates to the destination volume fail.

- Step 1. Click Storage → Volumes.
- Step 2. From the Volumes on SVM list, select All SVMs.
- Step 3. Select the FlexVol volume that you want to clone from the list of volumes.
- Click More Actions → Clone → Create → Volume . Step 4.
- In the Create FlexClone Volume dialog box, type the name of the FlexClone volume that you want Step 5. to create.
- Optional: If you want to enable thin provisioning for the new FlexClone volume, select Thin Step 6. Provisioning.
 - By default, this setting is the same as that of the parent volume.
- Create a Snapshot copy or select an existing Snapshot copy that you want to use as the base Step 7. Snapshot copy for creating the FlexClone volume.
- Step 8. Click Clone.

Creating FlexClone files

You can use Storage Manager to create a FlexClone file, which is a writable copy of a parent file. You can use these copies to test applications.

Before you begin

- The file that is cloned must be part of the active file system.
- The FlexClone license must be installed on the storage system.

About this task

• FlexClone files are supported only for FlexVol volumes, not for Infinite Volumes.

You can create a FlexClone file of a parent file that is within a volume by accessing the parent file from the volume in which it resides, not from the parent volume.

- You cannot create a FlexClone file on a SnapLock volume.
- Step 1. Click **Storage** → **Volumes** .
- Step 2. From the Volumes on SVM list, select All SVMs.
- Step 3. Select the volume in which you want to create a FlexClone file from the list of volumes.
- Step 4. Click More Actions → Clone → Create → File.
- Step 5. In the Create FlexClone File dialog box, select the file that you want to clone, and then specify a name for the FlexClone file.
- Step 6. Click Clone.

Result

The FlexClone file is created in the same volume as the parent file.

Splitting a FlexClone volume from its parent volume

If you want a FlexClone volume to have its own disk space instead of using the disk space of its parent volume, you can split the volume from its parent by using Storage Manager. After the split, the FlexClone volume becomes a normal FlexVol volume.

Before you begin

The FlexClone volume must be online.

About this task

The clone-splitting operation deletes all of the existing Snapshot copies of the clone. The Snapshot copies that are required for SnapMirror updates are also deleted. Therefore, any subsequent SnapMirror updates might fail.

You can pause the clone-splitting operation if you have to perform any other operation on the volume. You can resume the clone-splitting process after the other operation is complete.

- Step 1. Click Storage → Volumes.
- Step 2. From the Volumes on SVM list, select All SVMs.
- Step 3. Select the FlexClone volume that you want to split from its parent volume.
- Step 4. Click More Actions → Clone → Split.

Step 5. Confirm the FlexClone volume details for the clone-splitting operation, and then click **Start Split** in the confirmation dialog box.

Viewing the FlexClone volume hierarchy

You can use Storage Manager to view the hierarchy of FlexClone volumes and their parent volumes.

- Step 1. Click Storage → Volumes.
- Step 2. From the Volumes on SVM list, select All SVMs.
- Step 3. Select the required volume from the list of volumes.
- Step 4. Click More Actions → Clone → View Hierarchy.

Result

Volumes that have at least one child FlexClone volume are displayed. The FlexClone volumes are displayed as children of their respective parent volumes.

Changing the status of a volume

You can use Storage Manager to change the status of a FlexVol volume or an Infinite Volume when you want to take a volume offline, bring a volume back online, or restrict access to a volume.

Before you begin

- If you want a volume to be the target of a volume copy operation or a SnapMirror replication operation, the volume must be in the restricted state.
- If you want to take a NAS volume offline, the NAS volume must be unmounted.

About this task

You can take a volume offline to perform maintenance on the volume, to move the volume, or to destroy the volume. When a volume is offline, the volume is unavailable for read or write access by clients. You cannot take a root volume offline.

- Step 1. Click Storage → Volumes.
- Step 2. From the Volumes on SVM list, select All SVMs.
- Step 3. Select the volume for which you want to modify the status.
- Step 4. From the More Actions → Change status to menu, select the required volume status.
- Step 5. Click **Ok** in the confirmation dialog box to change the volume status.

Viewing the list of saved Snapshot copies

You can use Storage Manager to view the list of all of the saved Snapshot copies for a selected volume from the Snapshot Copies tab in the lower pane of the Volumes window or the Infinite Volume window. You can use the list of saved Snapshot copies to rename, restore, or delete a Snapshot copy.

Before you begin

The volume must be online.

About this task

You can view Snapshot copies for only one volume at a time.

- Step 1. Click Storage → Volumes.
- Step 2. From the Volumes on SVM list, select All SVMs.
- Step 3. Expand the required volume.
- Step 4. Click the **Show More Details** link to view more information about the volume.
- Step 5. Click the **Snapshot Copies** tab.

 The list of available Snapshot copies for the selected volume is displayed.

Creating Snapshot copies outside a defined schedule

You can use Storage Manager to create a Snapshot copy of a volume outside a defined schedule to capture the state of the file system at a specific point in time.

About this task

Creating a Snapshot copy of an Infinite Volume takes longer than creating a Snapshot copy of a FlexVol volume because an Infinite Volume is larger than a FlexVol volume.

- Step 1. Click Storage → Volumes.
- Step 2. From the Volumes on SVM list, select All SVMs.
- Step 3. Select the volume from the list of volumes.
- Step 4. Click More Actions → Manage Snapshots → Create.
- Step 5. In the Create Snapshot Copy dialog box, if you want to change the default name, specify a new name for the Snapshot copy.

 Valid characters are ASCII characters, numerals, hyphens (-), underscores (-), periods (-), and the
 - Valid characters are ASCII characters, numerals, hyphens (-), underscores (_), periods (.), and the plus (+) symbol.
 - The default name of a Snapshot copy consists of the volume name and the timestamp.
- Step 6. Click Create.
- Step 7. Verify that the Snapshot copy that you created is included in the list of Snapshot copies in the Snapshot Copies tab.

Setting the Snapshot copy reserve

You can use Storage Manager to reserve space (in percentage) for the Snapshot copies in a volume. By setting the Snapshot copy reserve, you can allocate enough disk space for the Snapshot copies so that they do not consume the active file system space.

About this task

- The default space that is reserved for Snapshot copies is 5 percent for SAN and VMware volumes.
- You cannot use Storage Manager to modify the Snapshot copy reserve settings of Infinite Volumes with storage classes.

You must use OnCommand Workflow Automation to modify the Snapshot copy reserve settings of Infinite Volumes with storage classes.

- Step 1. Click Storage → Volumes.
- Step 2. From the Volumes on SVM list, select All SVMs.
- Step 3. Select the volume for which you want to set the Snapshot copy reserve.
- Step 4. Click More Actions → Manage Snapshots → Configuration Settings.
- Step 5. Type or select the percentage of volume space that you want to reserve for the Snapshot copies, and then click **OK** .

Hiding the Snapshot copy directory

You can use Storage Manager to hide the Snapshot copy directory (.snapshot) so that the Snapshot copy directory is not visible when you view your volume directories. By default, the .snapshot directory is visible.

- Step 1. Click **Storage** → **Volumes**.
- Step 2. From the Volumes on SVM list, select All SVMs.
- Step 3. Select the volume for which you want hide the Snapshot copy directory.
- Step 4. Click More Actions → Manage Snapshots → Configuration Settings.
- Step 5. Ensure that the **Make snapshot directory (.snapshot) visible** option is not selected, and then click **OK** .

Scheduling automatic creation of Snapshot copies

You can use Storage Manager to set up a schedule for the automatic creating automatic Snapshot copies of a volume. You can specify the time and frequency of creating the copies. You can also specify the number of Snapshot copies that are saved.

- Step 1. Click Storage → Volumes.
- Step 2. From the Volumes on SVM list, select All SVMs.
- Step 3. Select the required volume from the list of volumes.
- Step 4. Click More Actions → Manage Snapshots → Configuration Settings.
- Step 5. In the Configure Volume Snapshot Copies dialog box , select **Enable scheduled Snapshot Copies** .
- Step 6. Select a Snapshot policy.
 You can schedule the creation of only policy-based Snapshot copies.
- Step 7. Click **OK** to save your changes and start your Snapshot copy schedule.

Restoring a volume from a Snapshot copy

You can use Storage Manager to restore a volume to a state that is recorded in a previously created Snapshot copy to retrieve lost information. When you restore a volume from a Snapshot copy, the restore operation overwrites the existing volume configuration. Any changes that were made to the data in the volume after the Snapshot copy was created are lost.

Before you begin

- The SnapRestore license must be installed on your system.
- If the FlexVol volume that you want to restore contains a LUN, the LUN must be unmounted or unmapped.
- There must be enough space available for the restored volume.
- Users accessing the volume must be notified that you are going to revert a volume, and that the data from the selected Snapshot copy replaces the current data in the volume.
- If you are restoring an Infinite Volume, the Snapshot copy must be valid, and the Infinite Volume must be online.

About this task

- If the volume that you restore contains junction points to other volumes, the volumes that are mounted on these junction points will not be restored.
- For an Infinite Volume, you must restore the entire volume.

You cannot restore single files or parts of files of an Infinite Volume.

- You cannot restore Snapshot copies for SnapLock Compliance volumes.
- Step 1. Click Storage → Volumes .
- Step 2. From the Volumes on SVM list, select All SVMs.
- Step 3. Select the volume that you want to restore from a Snapshot copy.
- Step 4. Click More Actions → Manage Snapshots → Restore.
- Step 5. Select the appropriate Snapshot copy, and then click **Restore**.
- Step 6. Select the confirmation check box, and then click **Restore**.

Extending the expiry date of Snapshot copies

You can use Storage Manager to extend the expiry date of the Snapshot copies in a volume.

Before you begin

The SnapLock license must be installed on your system.

About this task

You can extend the expiry date only for Snapshot copies in a data protection (DP) volume that is the destination in a SnapLock for SnapVault relationship.

- Step 1. Click Storage → Volumes.
- Step 2. From the Volumes on SVM list, select All SVMs.
- Step 3. Expand the required volume.
- Step 4. Click the **Show More Details** link to view more information about the volume.
- Step 5. Click the **Snapshot Copies** tab.

 The list of available Snapshot copies for the selected volume is displayed.
- Step 6. Select the Snapshot copy that you want to modify, and then click Extend Expiry Date .
- Step 7. In the Extend Expiry Date dialog box, specify the expiry date.

 The values must be in the range of 1 day through 70 years or Infinite.
- Step 8. Click OK.

Renaming Snapshot copies

You can use Storage Manager to rename a Snapshot copy to help you organize and manage your Snapshot copies.

- You cannot rename the Snapshot copies of an Infinite Volume.
- You cannot rename the Snapshot copies (which are committed to WORM state) of a SnapLock DP volume that is in a SnapVault relationship.
- Step 1. Click Storage → Volumes.
- Step 2. From the Volumes on SVM list, select All SVMs.
- Step 3. Click the required volume.
- Step 4. Click the **Show More Details** link to view more information about the volume.

- Click the **Snapshot Copies** tab. Step 5. The list of available Snapshot copies for the selected volume is displayed.
- Select the Snapshot copy that you want to rename, and then click **More Actions** → **Rename**. Step 6.
- Step 7. Specify a new name, and then click Rename. Valid characters are ASCII characters, numerals, hyphens (-), underscores (_), periods (.), and the plus (+) symbol.
- Verify the Snapshot copy name in the Snapshot Copies tab of the Volumes window. Step 8.

Deleting Snapshot copies

You can delete a Snapshot copy to conserve disk space or to free disk space by using Storage Manager. You can also delete a Snapshot copy if the Snapshot copy is no longer required.

Before you begin

If you want to delete a Snapshot copy that is busy or locked, you must have released the Snapshot copy from the application that was using the Snapshot copy.

About this task

You cannot delete the base Snapshot copy in a parent volume if a FlexClone volume is using that Snapshot copy.

The base Snapshot copy is the Snapshot copy that is used to create a FlexClone volume. The base Snapshot copy always displays the status busy and Application Dependency as busy, vclone in the parent volume.

You cannot delete a locked Snapshot copy that is used in a SnapMirror relationship.

The Snapshot copy is locked and is required for the next update.

- You cannot delete a Snapshot copy from a SnapLock DP volume that is used in a SnapVault relationship before the expiry time of the Snapshot copy.
- You cannot delete the unexpired Snapshot copies (which are committed to WORM state) of a SnapLock DP volume that is in a SnapVault relationship.
- Step 1. Click Storage → Volumes .
- From the Volumes on SVM list, select All SVMs. Step 2.
- Step 3. Expand the required volume.
- Step 4. Click the **Show More Details** link to view more information about the volume.
- Click the **Snapshot Copies** tab. Step 5. The list of available Snapshot copies for the selected volume is displayed.
- Select the Snapshot copy that you want to delete. Step 6.
- Step 7. Click **Delete**.
- Step 8. Select the confirmation check box, and then click **Delete**.

Resizing volumes

When your volume reaches nearly full capacity, you can increase the size of the volume, delete some Snapshot copies, or adjust the Snapshot reserve. You can use the Volume Resize wizard in Storage Manager to provide more free space.

- For a volume that is configured to grow automatically, you can modify the limit to which the volume can grow automatically based on the increased size of the volume.
- You cannot resize an Infinite Volume.
- You cannot use Storage Manager to resize Infinite Volumes with storage classes.

You must use OnCommand Workflow Automation to resize Infinite Volumes with storage classes.

 You cannot resize a data protection volume if its mirror relationship is broken or if a reverse resynchronization operation has been performed on the volume.

Instead, you must use the command-line interface (CLI).

- Step 1. Click Storage → Volumes.
- Step 2. From the Volumes on SVM list, select All SVMs.
- Step 3. Select the volume that you want to resize.
- Step 4. Click More Actions → Resize.
- Step 5. Type or select information as prompted by the wizard.
- Step 6. Confirm the details, and then click **Finish** to complete the wizard.
- Step 7. Verify the changes that you made to the available space and the total space of the volume in the Volumes window.

Enabling storage efficiency on a volume

You can use Storage Manager to enable storage efficiency and to configure both deduplication and data compression or only deduplication on a volume to save storage space. If you have not enabled storage efficiency when you created the volume, you can do so later by editing the volume.

Before you begin

- The volume must be online.
- If you want to use a policy-based deduplication schedule, you must have created an efficiency policy.

- You can enable background compression only if you have enabled background deduplication.
- You can enable inline compression and inline deduplication with or without enabling background compression and background deduplication, respectively.
- You can enable inline deduplication only on volumes that are contained by an aggregate with All Flash Optimized personality and on volumes that are contained by a Flash Pool aggregate.
- Step 1. Click Storage → Volumes.
- Step 2. From the Volumes on SVM list, select All SVMs.
- Step 3. Select the volume for which you want to enable storage efficiency, and then click Edit.
- Step 4. In the Edit Volume dialog box, click Storage Efficiency.
- Step 5. Select the **Background Deduplication** check box.
- Step 6. Select one of the following methods to run deduplication:

If you want to run deduplication	Then
Based on a storage efficiency policy	Ensure that the Policy based option is selected.
	Click Choose , and then select a storage efficiency policy.
	3. Click OK .
When required	Select the On-demand option.

Step 7. Optional: Select the **Background Compression** check box to enable background compression.

You cannot enable background compression for a volume that is contained by an aggregate with All Flash Optimized personality.

- Optional: Select the Inline Compression check box to compress data while it is being written to Step 8. the volume.
 - By default, inline compression is enabled on volumes that are contained by an aggregate with All Flash Optimized personality.
- Step 9. Optional: Select the **Inline Deduplication** check box to run deduplication before data is written to the disk.

By default, inline deduplication is enabled on volumes that are contained by an aggregate with All Flash Optimized personality.

Step 10. Click Save and Close.

Changing the deduplication schedule

You can use Storage Manager to change the deduplication schedule by choosing to run deduplication manually, automatically, or on a schedule that you specify.

- Click Storage → Volumes . Step 1.
- From the Volumes on SVM list, select All SVMs. Step 2.
- Step 3. Select the read/write volume for which you want to modify the deduplication schedule.
- Step 4. Click Edit, and then click the Storage Efficiency tab.
- Change the deduplication schedule as required. Step 5.
- Click Save and Close. Step 6.

Running deduplication operations

You can use Storage Manager to run deduplication immediately after creating a FlexVol volume or an Infinite Volume, or to schedule deduplication to run at a specified time.

Before you begin

- Deduplication must be enabled on the volume.
- The volume must be online and mounted.

About this task

Deduplication is a background process that consumes system resources during the operation; therefore, it might affect other operations that are in progress. You must cancel deduplication before you can perform any other operation.

- Step 1. Click Storage → Volumes .
- Step 2. From the Volumes on SVM list, select All SVMs.
- Step 3. Select the volume for which you want to run deduplication.
- Step 4. Click More Actions → Storage Efficiency.
- Step 5. If you are running deduplication on the volume for the first time, run deduplication on the entire volume data by selecting **Scan Entire Volume** in the Storage Efficiency dialog box.
- Step 6. Click Start.
- Step 7. View the last-run details of the deduplication operation in the Storage Efficiency tab of the Volumes window.

Moving FlexVol volumes between aggregates or nodes

You can nondisruptively move a FlexVol volume to a different aggregate or a different node for capacity utilization and improved performance by using Storage Manager.

Before you begin

If you are moving a data protection (DP) volume, the data protection mirror relationships must be initialized before you move the volume.

About this task

You cannot move SnapLock volumes between aggregates and nodes.

- Step 1. Click Storage → Volumes .
- Step 2. From the Volumes on SVM list, select All SVMs.
- Step 3. Select the volume that you want to move.
- Step 4. Click More Actions \rightarrow Move.
- Step 5. In the Move Volume dialog box, select the destination aggregate or node for the volume, and then change the tiering policy.

Notes:

- You cannot change the tiering policy of a root volume.
- You cannot move the root volume to FabricPool.
- For read/write volumes, you can set the tiering policy as "back up" during the volume move.

The tiering policy changes to "snapshot-only" after the move.

• Capacity tier values that are displayed in the "Used After Move" in both the source aggregate and destination aggregate are estimated values.

For the exact values, you must navigate to the Aggregate window and view the details of a specific aggregate.

Step 6. Click Move.

Manually triggering the cutover for volume move

For a volume move operation, you can use Storage Manager to manually trigger the cutover when the volume enters the cutover deferred phase. You can set the duration of the cutover and the cutover action to be performed by the system if the operation fails within that duration.

Step 1. Click Storage → SVMs.

- Step 2. Select the SVM, and then click SVM Settings.
- Step 3. Click the Volumes tab.
- Step 4. Expand the volume for which the volume move operation has been initiated.
- Step 5. Click the **Show More Details** link to view more information about the volume.
- Step 6. In the **Overview** tab, click **Cutover**.
- Step 7. In the Cutover dialog box, click **Advanced Options**.
- Step 8. Optional: Specify the cutover action and the cutover window period.
- Step 9. Click OK.

Assigning volumes to Storage QoS

You can limit the throughput of FlexVol volumes and FlexGroup volumes by assigning them to storage Quality of Service (QoS) policy groups. You can assign storage QoS for new volumes, or you can modify the storage QoS details of the volumes that are already assigned to a policy group by using Storage Manager.

- You can assign storage QoS only to read/write (rw) volumes that are online.
- You cannot assign storage QoS to a volume if the following storage objects are assigned to a policy group:
 - Parent storage virtual machine (SVM) of the volume
 - Child LUNs of the volume
 - Child files of the volume
- You can assign storage QoS or modify the QoS details for a maximum of 10 volumes simultaneously.
- Step 1. Click Storage → Volumes.
- Step 2. From the Volumes on SVM list, select All SVMs.
- Step 3. Select one or more volumes for which you want to assign storage QoS.
- Step 4. Click More Actions → Storage QoS.
- Step 5. In the Quality of Service Details dialog box, select the **Manage Storage Quality of Service** check box if you want to manage the workload performance of the FlexVol volume.

 If some of the volumes that you selected are already assigned to a policy group, the changes that you make might affect the performance of these volumes.
- Step 6. Create a new storage QoS policy group or select an existing policy group to control the input/output (I/O) performance of the FlexVol volume:

If you want to	Do this
Create a new policy group	Select New Policy Group . Specify the policy group name.
	3. Specify the minimum throughput limit.
	You can set the minimum throughput limit only on an AFA platform.
	 You cannot set the minimum throughput limit for volumes on a FabricPool-enabled aggregate.
	 If you do not specify the minimum throughput value or if the minimum throughput value is set to 0, the system automatically displays "None" as the value.
	This value is case-sensitive.
	 Specify the maximum throughput limit to prevent the workload of the objects in the policy group from exceeding the specified throughput limit.
	 The minimum throughput limit and the maximum throughput limit must be of the same unit type.
	 If you do not specify the minimum throughput limit, then you can set the maximum throughput limit in IOPS, B/s, KB/s, MB/s, and so on.
	 If you do not specify the maximum throughput value, the system automatically displays "Unlimited" as the value.
	This value is case-sensitive. The unit that you specify does not affect the maximum throughput.
Select an existing policy group	Select Existing Policy Group , and then click Choose to select an existing policy group from the Select Policy Group dialog box.
	2. Specify the minimum throughput limit.
	You can set the minimum throughput limit only on an AFA platform.
	You cannot set the minimum throughput limit for volumes on a FabricPool-enabled aggregate.
	If you do not specify the minimum throughput value or if the minimum throughput value is set to 0, the system

If you want to	Do this
	automatically displays " None " as the value.
	This value is case-sensitive.
	 Specify the maximum throughput limit to prevent the workload of the objects in the policy group from exceeding the specified throughput limit.
	 The minimum throughput limit and the maximum throughput limit must be of the same unit type.
	 If you do not specify the minimum throughput limit, then you can set the maximum throughput limit in IOPS, B/s, KB/s, MB/s, and so on.
	 If you do not specify the maximum throughput value, the system automatically displays "Unlimited" as the value.
	This value is case-sensitive. The unit that you specify does not affect the maximum throughput.
	If the policy group is assigned to more than one object, the maximum throughput that you specify is shared among the objects.

- Step 7. Optional: Click the link that specifies the number of volumes if you want to review the list of selected volumes, and then click **Discard** if you want to remove any volumes from the list. The link is displayed only when multiple volumes are selected.
- Step 8. Click OK.

Creating a mirror relationship from a source SVM

You can use Storage Manager to create a mirror relationship from the source storage virtual machine (SVM), and to assign a mirror policy and schedule to the mirror relationship. The mirror copy enables quick availability of data if the data on the source volume is corrupted or lost.

Before you begin

The SnapMirror license must be enabled on the source cluster and destination cluster.

Note: For some platforms, it is not mandatory for the source cluster to have the SnapMirror license enabled if the destination cluster has the SnapMirror license enabled.

- While mirroring a SnapLock volume, the SnapMirror license must be installed on both the source cluster and destination cluster, and the SnapLock license must be installed on the destination cluster.
- The source cluster and destination cluster, and the source SVM and destination SVM must be in a healthy peer relationship.
- The destination aggregate must have space available.
- FlexVol volumes must be online and read/write.

- The SnapLock aggregate type must be the same.
- A maximum of 25 volumes can be protected in one selection.
- If you are connecting from a cluster running ONTAP 9.2 or earlier to a remote cluster on which Security
 Assertion Markup Language (SAML) authentication is enabled, password-based authentication must be
 enabled on the remote cluster.

About this task

- Storage Manager does not support a cascade relationship. For example, a destination volume in a relationship cannot be the source volume in another relationship.
- You can create a mirror relationship between SnapLock volumes of the same type only.
 - For example, if the source volume is a SnapLock Enterprise volume, then the destination volume must also be a SnapLock Enterprise volume.
- If encryption is enabled on the source volume and the destination cluster is running a version of ONTAP software earlier than ONTAP 9.3, then encryption is disabled on the destination volume by default.
- Step 1. Click Storage → Volumes.
- Step 2. From the Volumes on SVM list, select All SVMs.
- Step 3. Select the volumes for which you want to create mirror relationships, and then click **More Actions** → **Protect** .
 - The **Protect** option is available only for a read/write volume.
- Step 4. Select **Mirror** from the Volume Relationship Type list.
- Step 5. Specify the cluster and the SVM, and then enter a name suffix for the destination volume. If the specified cluster is running a version of ONTAP software earlier than ONTAP 9.3, then only peered SVMs are listed. If the specified cluster is running ONTAP 9.3 or later, peered SVMs and permitted SVMs are listed.
- Step 6. Optional: Click , update the protection policy and protection schedule, select **FabricPoolenabled aggregate**, and then initialize the protection relationship.
- Step 7. Click Save.

Result

A new destination volume of type dp is created with the following default settings:

- Autogrow is enabled.
- Compression is disabled.
- The language attribute is set to match the language attribute of the source volume.

If the destination FlexVol volume is on a different SVM than the source FlexVol volume, then a peer relationship is created between the two SVMs if the relationship does not already exist.

A mirror relationship is created between the source volume and the destination volume. The base Snapshot copy is transferred to the destination volume if you have opted to initialize the relationship.

Creating a vault relationship from a source SVM

You can use Storage Manager to create a vault relationship from the source storage virtual machine (SVM), and to assign a vault policy to the vault relationship to create a backup vault. In the event of data loss or corruption on a system, backed-up data can be restored from the backup vault destination.

Before you begin

The SnapVault license or SnapMirror license must be enabled on both the source cluster and the
destination cluster.

Note: For some platforms, it is not mandatory for the source cluster to have the SnapVault license or the SnapMirror license enabled if the destination cluster has the SnapVault license or the SnapMirror license enabled.

- The source cluster and destination cluster, and the source SVM and destination SVM must be in a healthy peer relationship.
- The destination aggregate must have space available.
- The source aggregate and the destination aggregate must be 64-bit aggregates.
- A vault (XDP) policy must exist.

If a vault policy does not exist, you must create a vault policy or accept the default vault policy (named XDPDefault) that is automatically assigned.

- FlexVol volumes must be online and read/write.
- The SnapLock aggregate type must be the same.
- A maximum of 25 volumes can be protected in one selection.
- If you are connecting from a cluster running ONTAP 9.2 or earlier to a remote cluster on which Security Assertion Markup Language (SAML) authentication is enabled, password-based authentication must be enabled on the remote cluster.

About this task

- Storage Manager does not support a cascade relationship. For example, a destination volume in a relationship cannot be the source volume in another relationship.
- You can create a lock-vault relationship only between a non-SnapLock (primary) volume and a Snaplock destination (secondary) volume.
- If encryption is enabled on the source volume and the destination cluster is running a version of ONTAP software earlier than ONTAP 9.3, then encryption is disabled on the destination volume by default.
- Step 1. Click Storage → Volumes.
- Step 2. From the Volumes on SVM list, select All SVMs.
- Step 3. Select the volumes for which you want to create vault relationships, and then click **More Actions** → **Protect** .
 - The **Protect** option is available only for a read/write volume.
- Step 4. Select **Vault** from the Volume relationship Type list.
- Step 5. Specify the cluster and the SVM, and then enter a name suffix for the destination volume. If the specified cluster is running a version of ONTAP software earlier than ONTAP 9.3, then only peered SVMs are listed. If the specified cluster is running ONTAP 9.3 or later, peered SVMs and permitted SVMs are listed.
- Step 6. Optional: Click , update the protection policy and protection schedule, enable SnapLock properties on the destination volume, select a FabricPool-enabled aggregate, and then initialize the protection relationship.
- Step 7. Click Save.

Creating a mirror and vault relationship from a source SVM

You can use Storage Manager to create a mirror and vault relationship from the source storage virtual machine (SVM). Creating this relationship enables you to better protect your data by periodically transferring

data from the source volume to the destination volume. It also enables you to retain data for long periods by creating backups of the source volume.

Before you begin

- The source cluster must be running ONTAP 8.3.2 or later.
- The SnapMirror license must be enabled on the source cluster and destination cluster.

Note: For some platforms, it is not mandatory for the source cluster to have the SnapMirror license enabled if the destination cluster has the SnapMirror license enabled.

- The source cluster and destination cluster must be in a healthy peer relationship.
- The source SVM and destination SVM must be either in a healthy peer relationship or the destination SVM must have permission to peer.
- The destination aggregate must have space available.
- The source aggregate and the destination aggregate must be 64-bit aggregates.
- FlexVol volumes must be online and read/write.
- The SnapLock aggregate type must be the same.
- A maximum of 25 volumes can be protected in one selection.
- If you are connecting from a cluster running ONTAP 9.2 or earlier to a remote cluster on which Security
 Assertion Markup Language (SAML) authentication is enabled, password-based authentication must be
 enabled on the remote cluster.

About this task

- Storage Manager does not support a cascade relationship. For example, a destination volume in a relationship cannot be the source volume in another relationship.
- If encryption is enabled on the source volume and the destination cluster is running a version of ONTAP software earlier than ONTAP 9.3, then encryption is disabled on the destination volume by default.
- Step 1. Click Storage → Volumes.
- Step 2. From the Volumes on SVM list, select All SVMs.
- Step 3. Select the volumes for which you want to create mirror and vault relationships, and then click More Actions → Protect .
 - The **Protect** option is available only for a read/write volume.
- Step 4. Select Mirror and Vault from the Volume relationship Type list.
- Step 5. Specify the cluster and the SVM, and then enter a name suffix for the destination volume. If the specified cluster is running a version of ONTAP software earlier than ONTAP 9.3, then only peered SVMs are listed. If the specified cluster is running ONTAP 9.3 or later, peered SVMs and permitted SVMs are listed.
- Step 6. Optional: Click , update the protection policy and protection schedule, select **FabricPoolenabled aggregate**, and then initialize the protection relationship.
- Step 7. Click Save.

Creating an NFS datastore for VMware

You can use the Create NFS Datastore for VMware wizard in Storage Manager to create an NFS datastore for VMware. You can create a volume for the NFS datastore and specify the ESX servers that can access the NFS datastore.

Before you begin

The NFS service must be licensed.

- Step 1. Click Storage → Volumes.
- Step 2. From the Volumes on SVM list, select All SVMs.
- Step 3. Select the volume, and then click More Actions → Provision Storage for VMware.
- Step 4. In the Create NFS Datastore for VMware wizard, type or select information as required.
- Step 5. Confirm the details, and then click Finish to complete the wizard.

Changing the tiering policy of a volume

You can use Storage Manager to change the default tiering policy of a volume to control whether the data of the volume is moved to the capacity tier when the data becomes inactive.

- Step 1. Click Storage → Volumes.
- Step 2. From the Volumes on SVM list, select All SVMs.
- Step 3. Select the volume for which you want to change the tiering policy, and then click **More Actions** → **Change Tiering Policy**.
- Step 4. Select the required tiering policy from the Tiering Policy list, and then click Save.

Creating FlexGroup volumes

You can use Storage Manager to create a FlexGroup volume by selecting specific aggregates or by selecting system-recommended aggregates.

About this task

- You can create only read/write (rw) FlexGroup volumes.
- You cannot create FlexGroup volumes in a MetroCluster configuration.
- Step 1. Click Storage → Volumes.
- Step 2. Click Create → Create FlexGroup.
- Step 3. In the Create FlexGroup Volume window, specify a name for the FlexGroup volume. By default, the aggregates are selected as per best practices.

Note: If you want to select aggregates as per your requirement, click (advanced options).

- Step 4. Specify a size for the FlexGroup volume.
- Step 5. Enable the **Encrypted** button to enable encryption for the volume.

 This option is available only if you have enabled the Volume Encryption license and if the corresponding platform supports encryption.
- Step 6. Optional: Click To specify the advanced options.
 - a. In the General Details section, select the space reserve and security style, and then set the UNIX permission for the volume.
 - When thin provisioning is enabled, space is allocated to the volume from the aggregate only when data is written to the volume.

Note: For AFA (AFA) storage systems, thin provisioning is enabled by default and for other storage systems, thick provisioning is enabled by default.

- b. In Optimize space section, enable fractional reserve, and then grow or shrink the volume, as required.
- c. In the Storage Efficiency section, enable deduplication on the volume.

Storage Manager uses the default deduplication schedule. If the specified volume size exceeds the limit that is required for running deduplication, the volume is created and deduplication is not enabled.

For systems with All Flash Optimized personality, inline compression and the auto deduplication schedule is enabled by default.

- d. In the Quality of Service section, specify the policy group to control the input/output (I/O) performance of the FlexGroup volume.
- e. Click **Apply** to update the changes.
- Step 7. In the Protection section, enable the Volume Protection option and select the Volume Relationship Type .
- Step 8. Click **Create** to create the FlexGroup volume.

Editing FlexGroup volumes

You can use Storage Manager to edit the properties of an existing FlexGroup volume.

Before you begin

The FlexGroup volume must be online.

- Step 1. Click Storage → Volumes.
- Step 2. From the Volumes on SVM list, select All SVMs.
- Step 3. Select the FlexGroup volume that you want to modify, and click Edit .
- Step 4. Specify the size to which you want to resize the FlexGroup volume. By default, existing aggregates are used to resize the FlexGroup volume.

Note: If you want to expand the FlexGroup volume by adding new resources, you should click 4 (advanced options).

- Step 5. Specify the percentage of the Snapshot copy reserve.
- Step 6. Optional: Click to modify the FlexGroup volume settings.
 - a. In the General Details section, select the space reserve and security style, and then set the UNIX permission for the volume.
 - When thin provisioning is enabled, space is allocated to the volume from the aggregate only when data is written to the volume.

Note: For AFA storage systems, thin provisioning is enabled by default and for other storage systems, thick provisioning is enabled by default.

- b. In Optimize space section, enable fractional reserve, and then grow or shrink the volume, as required.
- c. In the Storage Efficiency section, enable deduplication on the volume.
- d. Click Apply to update the changes.
- Step 7. Click **Save** to save the changes.

Resizing FlexGroup volumes

You can use Storage Manager to resize a FlexGroup volume by resizing existing resources or by adding new resources.

Before you begin

- To resize a FlexGroup volume, there must be enough free space on the existing aggregates.
- To expand a FlexGroup volume, there must be enough free space on the aggregate that you are using for expansion.
- Step 1. Click Storage → Volumes.
- Step 2. From the Volumes on SVM list, select All SVMs.
- Step 3. Select the FlexGroup volume that you want to resize, and then click **More Actions → Resize**.
- Step 4. In the Resize FlexGroup Volume window, specify the size to which you want to resize the FlexGroup volume.
 - By default, existing aggregates are used to resize the FlexGroup volume.

Note: If you want to expand the FlexGroup volume by adding new resources, click (advanced options).

- Step 5. Specify the percentage of the Snapshot copy reserve.
- Step 6. Click **Resize** to resize the FlexGroup volume.

Changing the status of a FlexGroup volume

You can use Storage Manager to change the status of a FlexGroup volume when you want to take a FlexGroup volume offline, bring a FlexGroup volume back online, or restrict access to a FlexGroup volume.

About this task

Storage Manager does not support constituent-level management for FlexGroup volumes.

- Step 1. Click Storage → Volumes.
- Step 2. From the Volumes on SVM list, select All SVMs.
- Step 3. Select the FlexGroup volume for which you want to modify the status.
- Step 4. Click **More Actions → Change status to**, and then update the FlexGroup volume status by selecting the required status.

Deleting FlexGroup volumes

You can use Storage Manager to delete a FlexGroup volume when you no longer require the FlexGroup volume.

Before you begin

- The junction path of the FlexGroup volume must be unmounted.
- The FlexGroup volume must be offline.

About this task

Storage Manager does not support constituent level of management for FlexGroup volumes.

- Step 1. Click Storage → Volumes.
- Step 2. From the Volumes on SVM list, select All SVMs.
- Step 3. Select the FlexGroup volume that you want to delete, and then click **Delete**.
- Step 4. Select the confirmation check box, and then click **OK**.

Viewing FlexGroup volume information

You can use Storage Manager to view information about a FlexGroup volume. You can view a graphical representation of the space allocated, the protection status, and the performance of a FlexGroup volume.

About this task

You can also view the Snapshot copies that are available for the FlexGroup volume, the data protection relationships for the FlexGroup volume, and the average performance metrics, read performance metrics, and write performance metrics of the FlexGroup volume based on latency, IOPS, and throughput.

- Step 1. Click Storage → Volumes .
- Step 2. From the Volumes on SVM list, select All SVMs.
- Step 3. From the displayed list of FlexGroup volumes, select the FlexGroup volume about which you want to view information.

 The information about the FlexGroup volume, the space allocated to the FlexGroup volume, the protection status of the FlexGroup volume, and the performance information about the FlexGroup volume are displayed.
- Step 4. Click the Show More Details link to view more information about the FlexGroup volume.
- Step 5. Click the Snapshot Copies tab to view the Snapshot copies of the FlexGroup volume.
- Step 6. Click the Data Protection tab to view the data protection relationships for the FlexGroup volume.
- Step 7. Click the Storage Efficiency tab to view the storage efficiency settings.
- Step 8. Click the Performance tab to view the the average performance metrics, read performance metrics, and write performance metrics of the FlexGroup volume based on latency, IOPS, and throughput.

What Lenovo Volume Encryption is

Lenovo Volume Encryption is the process of protecting the user data, including the metadata, by encrypting the data before storing it on the disk. The data is decrypted and provided to the user only after proper authentication is provided.

To encrypt data, an encryption key is required. Each volume is assigned an encryption key to encrypt/decrypt operations of its data.

Snapshot configuration

You can configure Snapshot copies by setting a schedule for an existing Snapshot policy. Starting with ONTAP 9.4, you can have less than 1024 Snapshot copies of a FlexVol volume.

How volume guarantees work for FlexVol volumes

Volume guarantees (sometimes called *space guarantees*) determine how space for a volume is allocated from its containing aggregate—whether or not the space is preallocated for the volume.

The guarantee is an attribute of the volume.

You set the guarantee when you create a new volume; you can also change the guarantee for an existing volume, provided that sufficient free space exists to honor the new guarantee.

Volume guarantee types can be volume (the default type) or none.

• A guarantee type of volume allocates space in the aggregate for the entire volume when you create the volume, regardless of whether that space is used for data yet.

The allocated space cannot be provided to or allocated for any other volume in that aggregate.

A guarantee of none allocates space from the aggregate only as it is needed by the volume.

The amount of space consumed by volumes with this guarantee type grows as data is added instead of being determined by the initial volume size, which might leave space unused if the volume data does not grow to that size. The maximum size of a volume with a guarantee of none is not limited by the amount of free space in its aggregate. It is possible for the total size of all volumes associated with an aggregate to exceed the amount of free space for the aggregate, although the amount of space that can actually be used is limited by the size of aggregate.

Writes to LUNs or files (including space-reserved LUNs and files) contained by that volume could fail if the containing aggregate does not have enough available space to accommodate the write.

When space in the aggregate is allocated for a volume guarantee for an existing volume, that space is no longer considered free in the aggregate, even if the volume is not yet using the space. Operations that consume free space in the aggregate, such as creation of aggregate Snapshot copies or creation of new volumes in the containing aggregate, can occur only if there is enough available free space in that aggregate; these operations are prevented from using space already allocated to another volume.

When the free space in an aggregate is exhausted, only writes to volumes or files in that aggregate with preallocated space are guaranteed to succeed.

Guarantees are honored only for online volumes. If you take a volume offline, any allocated but unused space for that volume becomes available for other volumes in that aggregate. When you try to bring that volume back online, if there is insufficient available space in the aggregate to fulfill its guarantee, it will remain offline. You must force the volume online, at which point the volume's guarantee will be disabled.

What SnapDiff is

SnapDiff is an internal ONTAP engine that quickly identifies the file and directory differences between two Snapshot copies.

By finding the differences between two Snapshot copies, SnapDiff eliminates the file scanning requirements of a traditional backup application during an incremental backup, which reduces the backup processing to only the time required to write the changed or added data.

When incrementally backing up an Infinite Volume to tape using SnapDiff, the backup application uses the SnapDiff application programming interfaces (APIs) to communicate with the SnapDiff engine to identify new, changed, and deleted files between two Snapshot copies of the active file system in an Infinite Volume. The differencing process uses the namespace constituent and namespace mirror constituents in an Infinite Volume to determine names for the list of new, changed, and deleted files. When these changes are identified, the backup application backs up the identified data from the list that is produced during the differencing process.

FlexClone volumes and space guarantees

A FlexClone volume inherits its initial space guarantee from its parent volume. For example, if you create a FlexClone volume from a parent volume with a space guarantee of volume, then the FlexClone volume's initial space guarantee will be volume also. You can change the FlexClone volume's space guarantee.

For example, suppose that you have a 100-MB FlexVol volume with a space guarantee of volume, with 70 MB used and 30 MB free, and you use that FlexVol volume as a parent volume for a new FlexClone volume. The new FlexClone volume has an initial space guarantee of volume, but it does not require a full 100 MB of space from the aggregate, as it would if you had copied the volume. Instead, the aggregate needs to allocate only 30 MB (100 MB minus 70 MB) of free space to the clone.

If you have multiple clones with the same parent volume and a space guarantee of volume, they all share the same shared parent space with each other, so the space savings are even greater.

Note: The shared space depends on the existence of the shared Snapshot copy (the base Snapshot copy that was used to create the FlexClone volume). If you delete this shared Snapshot copy, you lose the space savings provided by the FlexClone volume.

Thin provisioning for greater efficiencies using FlexVol volumes

With thin provisioning, when you create volumes and LUNs in a given aggregate, you do not actually allocate any space for those in advance. The space is allocated as data is written to the volumes or LUNs.

The unused aggregate space is available to other volumes and LUNs. By allowing as-needed provisioning and space reclamation, thin provisioning can improve storage utilization and decrease storage costs.

A FlexVol volume can share its containing aggregate with other FlexVol volumes. Therefore, a single aggregate is the shared source of all the storage used by the FlexVol volumes it contains. Flexible volumes are no longer bound by the limitations of the disks on which they reside. A FlexVol volume can be sized based on how much data you want to store in it, rather than on the size of your disk. This flexibility enables you to maximize the performance and capacity utilization of the storage systems. Because FlexVol volumes can access all available physical storage in the system, improvements in storage utilization are possible.

Example

A 500-GB volume is allocated with only 100 GB of actual data; the remaining 400 GB allocated has no data stored in it. This unused capacity is assigned to a business application, even though the application might not need all 400 GB until later. The allocated but unused 400 GB of excess capacity is temporarily wasted.

With thin provisioning, the storage administrator provisions 500 GB to the business application but uses only 100 GB for the data. The difference is that with thin provisioning, the unused 400 GB is still available to other applications. This approach allows the application to grow transparently, and the physical storage is fully allocated only when the application needs it. The rest of the storage remains in the free pool to be used as needed.

Using space reservations with FlexVol volumes

Using space reservation, you can provision FlexVol volumes. Thin provisioning appears to provide more storage than is actually available from a given aggregate, as long as not all of that storage is currently being used.

Thick provisioning sets aside enough storage from the aggregate to ensure that any block in the volume can be written to at any time.

Aggregates can provide storage to volumes contained by more than one storage virtual machine (SVM). If you are using thin provisioning, and you need to maintain strict separation between your SVMs (for example, if you are providing storage in a multi-tenancy environment), you should either use fully allocated volumes (thick provisioning) or ensure that your aggregates are not shared between tenants.

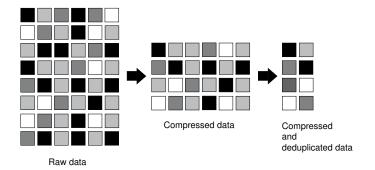
When the space reserve is set to "Default", the ONTAP space reservation settings apply to the volumes.

Benefits of storage efficiency

Storage efficiency enables you to store the maximum amount of data for the lowest cost and accommodate rapid data growth while consuming less space. You can use technologies such as RAID-DP, FlexVol, Snapshot copies, deduplication, data compression, SnapMirror, and FlexClone to increase storage utilization and decrease storage costs. When used together, these technologies help to achieve increased performance.

- High-density disk drives, such as serial advanced technology attachment (SATA) drives mitigated with RAID-DP technology, provide increased efficiency and read performance.
- RAID-DP is a double-parity RAID6 implementation that protects against dual disk drive failures.
- Thin provisioning enables you to maintain a common unallocated storage space that is readily available to other applications as required.
 - It is based on FlexVol technology.
- Snapshot copies are a point-in-time, read-only view of a data volume, which consume minimal storage space.
 - Two Snapshot copies created in sequence differ only by the blocks added or changed in the time interval between the two. This block incremental behavior limits the associated consumption of storage capacity.
- Deduplication saves storage space by eliminating redundant data blocks within a FlexVol volume.
- Data compression stores more data in less space and reduces the time and bandwidth required to replicate data during volume SnapMirror transfers.
 - You have to choose the type of compression (inline or background) based on your requirement and the configurations of your storage system. Inline compression checks if data can be compressed, compresses data, and then writes data to the volume. Background compression runs on all the files, irrespective of whether the file is compressible or not, after all the data is written to the volume.
- SnapMirror technology is a flexible solution for replicating data over local area, wide area, and Fibre Channel networks.
 - It can serve as a critical component in implementing enterprise data protection strategies. You can replicate your data to one or more storage systems to minimize downtime costs in case of a production site failure. You can also use SnapMirror technology to centralize the backup of data to disks from multiple data centers.
- FlexClone technology copies data volumes, files, and LUNs as instant virtual copies.
 - A FlexClone volume, file, or LUN is a writable point-in-time image of the FlexVol volume or another FlexClone volume, file, or LUN. This technology enables you to use space efficiently, storing only data that changes between the parent and the clone.
- The unified architecture integrates multiprotocol support to enable both file-based and block-based storage on a single platform.
 - With FlexArray Virtualization, you can virtualize your entire storage infrastructure under one interface, and you can apply all the preceding efficiencies to your non-Lenovo systems.

Data compression and deduplication


Beginning with Data ONTAP 8.0.1, data compression is supported with deduplication.

When both data compression and deduplication are enabled on a FlexVol volume, the data is first compressed and then deduplicated. Therefore, deduplication can further increase the space savings by removing duplicate blocks in the FlexVol volume.

Though data compression and deduplication can be enabled on a FlexVol volume, the savings might not be the sum of the savings when each is run individually on a data set. The combined savings can yield higher savings than running deduplication or data compression individually.

You can achieve better savings when you run the data compression scanner before deduplication. This is because data compression scanner cannot run on data that is locked by deduplication, but deduplication can run on compressed data.

The following illustration shows how data is first compressed and then deduplicated:

When you run deduplication on a FlexVol volume that contains uncompressed data, it scans all the uncompressed blocks in the FlexVol volume and creates a digital fingerprint for each of the blocks.

Note: If a FlexVol volume has compressed data, but the compression option is disabled on that volume, then you might lose the space savings when you run the sis undo command.

Guidelines for using deduplication

You must remember certain guidelines about system resources and free space when using deduplication.

The guidelines are as follows:

- If you have a performance-sensitive solution, you must carefully consider the performance impact of deduplication and measure the impact in a test setup before using deduplication.
- Deduplication is a background process that consumes system resources while it is running.

If the data does not change very often in a FlexVol volume, it is best to run deduplication less frequently. Multiple concurrent deduplication operations running on a storage system lead to a higher consumption of system resources.

- You must ensure that sufficient free space exists for deduplication metadata in the volumes and aggregates.
- If deduplication is used on the source volume, you must use deduplication on the destination volume.
- You must use automatic mode when possible so that deduplication runs only when significant additional
 data has been written to each FlexVol volume.
- You must run deduplication before creating a Snapshot copy to obtain maximum savings.
- You must set the Snapshot reserve to greater than 0 if Snapshot copies are used.

Options for resizing volumes

You can use the Volume Resize wizard to change your volume size, adjust the Snapshot reserve, delete Snapshot copies, and dynamically view the results of your changes.

The Volume Resize wizard displays a bar graph that displays the current space allocations within the volume, including the amount of used and free space. When you make changes to the size or Snapshot reserve of the volume, this graph is updated dynamically to reflect the changes.

You can also use the **Calculate space** button to determine the amount of space that is freed by deleting selected Snapshot copies. This operation is not supported on an Infinite Volume.

You cannot use Storage Manager to resize Infinite Volumes with storage classes. Instead, you can use OnCommand Workflow Automation .

You can use the Volume Resize wizard to make the following changes to your volume:

Change the volume size You can change the total volume size to increase or

decrease storage space. You cannot reduce the

size of an Infinite Volume.

Adjust Snapshot reserve You can adjust the amount of space reserved for

Snapshot copies to increase or decrease storage

space.

Delete Snapshot copies You can delete Snapshot copies to reclaim volume

space.

Note: Snapshot copies that are in use cannot be

deleted.

Assign aggregates to storage virtual machines

(SVMs) with Infinite Volume

You can assign specific aggregates to the SVM so that the Infinite Volume will use those specific aggregates and not use any aggregate in the

cluster.

Autogrow You can specify the limit to which the volume can

be grown automatically, if required.

Considerations when moving volumes

Moving a volume has many considerations and recommendations that are influenced by the volume you are moving or by the system configuration. You should understand the considerations associated with moving volumes.

- If you move a volume that has inline deduplication enabled from an aggregate with All Flash Optimized
 personality or a Flash Pool aggregate to an HDD aggregate, inline deduplication is disabled on the
 volume.
- If you move a volume that has background deduplication and inline compression enabled from an
 aggregate with All Flash Optimized personality to an HDD aggregate, then background compression,
 background deduplication, and inline compression are automatically enabled on the volume.
- If you move a volume that has background compression enabled from an HDD aggregate to an aggregate with All Flash Optimized personality, background compression is disabled on the volume.
- If you move a volume from a Flash Pool aggregate to a non- Flash Pool aggregate, the caching policies and retention priority are disabled.
- If you move a volume from a non-Flash Pool aggregate to a Flash Pool aggregate, the default caching
 policy and the default retention priority are automatically assigned to the volume.

Volumes window

You can use the Volumes window to manage your FlexVol volumes, FlexGroup volumes, and Infinite Volumes, and to display information about these volumes.

You cannot view or manage volumes that are in storage virtual machines (SVMs) that are configured for disaster recovery (DR) by using Storage Manager. You must use the command-line interface (CLI) instead.

Note: The command buttons and list of columns will differ based on the type of volume that is selected. You will be able to view only those command buttons and columns that are applicable for the selected volume.

Command buttons

Create Provides the following options:

Create FlexVol Opens the Create

Volume dialog box, which enables you to add FlexVol volumes and Infinite Volumes.

Create FlexGroup Opens the Create

FlexGroup window, which enables you to create FlexGroup

volumes.

Edit Enables you to edit the properties of the selected

volume.

Deletes the selected volume or volumes.

More Actions Provides the following options:

Change status to

Changes the status of the selected volume to one of the following statuses:

- Online
- Offline
- Restrict

An Infinite Volume can go into a mixed state, which means that its constituents are not all in the same state. However, you cannot set the status of an Infinite Volume to a mixed state, which is a read-only state. A mixed state typically occurs when most of the constituents are online, but one constituent is offline. For example, if you take an aggregate offline that contains constituents, you also cause the constituents to go offline.

When you change the status of an Infinite Volume, the status of the constituents is changed one after the other. The Infinite Volume is in a mixed state until the operation is complete.

Enables you to change the size of the volume.

For FlexGroup volumes, you can use existing resources to resize the volumes or you can add new resources to expand the volumes.

Opens the Create Protection Relationship

Resize

Protect

window for the volumes that are selected as source.

Manage Snapshots

Provides a list of Snapshot options, including the following:

Create

Displays the Create Snapshot dialog box, which you can use to create a Snapshot copy of the selected volume.

 Configuration Settings

> Configures the Snapshot settings.

Restore

Restores a Snapshot copy of the selected volume.

Provides a list of clone

options, including the following:

• Create

Creates a clone of the selected volume or a clone of a file from the selected volume.

Split

Splits the clone from the parent volume.

View Hierarchy

Displays information about the clone hierarchy.

The Clone option is not available for Infinite Volumes.

Storage Efficiency

Opens the Storage Efficiency dialog box, which you can use to manually start deduplication or to abort a running

Clone

deduplication operation. This button is displayed only if deduplication is enabled on the storage

system.

This option is not available for Infinite Volumes with storage

classes.

Move Opens the Move

Volume dialog box, which you can use to move volumes from one aggregate or node to another aggregate or node within the same

SVM.

Storage QoS Opens the Quality of

Service details dialog box, which you can use to assign one or more volumes to a new or existing policy group.

This option is not available for Infinite

Volumes.

Provision Storage for

VMware

Enables you to create a

volume for the NFS datastore and to

specify the ESX servers that can access the NFS datastore.

Mount Enables you to mount

an Infinite Volume on the namespace of the SVM with Infinite

Volume.

Unmount Enables you to

unmount an Infinite Volume before you change the junction path or delete the Infinite Volume.

View Missing Protection Relationship

Displays read/write volumes that are online and that are not protected, and volumes that have protection relationships and that are not initialized.

Reset Filters Enables you to reset the filters that were set to view

missing protection relationships.

Refresh Updates the information in the window.

Volume list

Status Displays the status of the volume.

Name Displays the name of the volume.

Style Displays the type of the volume such as FlexVol,

FlexGroup, and so on.

SVM Displays the storage virtual machine (SVM) that

contains the volume.

Aggregates Displays the name of the aggregates belonging to

the volume.

Thin Provisioned Displays whether space guarantee is set for the

selected volume. Valid values for online volumes are

Yes and No.

Root volume Displays whether the volume is a root volume.

Available Space Displays the available space in the volume.

Total Space Displays the total space in the volume, which

includes the space that is reserved for Snapshot

copies.

% Used Displays the amount of space (in percentage) that is

used in the volume.

Logical Used % Displays the amount of logical space (in

percentage), including space reserves that is used in the volume irrespective of whether logical space

reporting is enabled or not.

Note: This field is displayed only if you have enabled logical space reporting using the CLI.

Logical Space Reporting Displays whether logical space reporting is enabled

on the volume.

Note: This field is displayed only if you have enabled logical space reporting using the CLI.

Type Displays the type of volume: rw for read/write, Is for

load sharing, or dp for data protection.

Protection Relationship Display whether the volume has a protection

relationship initiated.

If the relationship is between an ONTAP system and a non-ONTAP system, the value is displayed as No

by default.

Storage Efficiency Displays whether deduplication is enabled or

disabled for the selected volume.

Encrypted Displays whether the volume is encrypted or not.

QoS Policy Group Displays the name of the Storage QoS policy group

to which the volume is assigned. By default, this

column is hidden.

SnapLock Type Displays the SnapLock type of the volume.

Clone Displays whether the volume is a FlexClone volume.

Is Volume Moving Displays whether a volume is being moved from one

aggregate to another aggregate, or from one node

to another node.

Tiering Policy Displays the tiering policy of a FabricPool-enabled

aggregate. The default tiering policy is "snapshot-

only ".

Application Displays the name of the application that is

assigned to the volume.

Details area

You can select a volume to view information about the selected volume. You can click Show More Details to view detailed information about the selected volume.

Overview tab

Displays general information about the selected volume, and displays a pictorial representation of the space allocation of the volume, the protection status of the volume, and the performance of the volume. The Overview tab also displays information about a volume that is being moved, such as the state and phase of the volume move, the destination node and aggregate to which the volume is being moved, the percentage of volume move that is complete, the estimated time to complete the volume move operation, and details of the volume move operation.

The refresh interval for the performance data is 15 seconds.

This tab contains the following command button:

Cutover Opens the Cutover

dialog box , which enables you to manually trigger the

cutover.

The **Cutover** command button is displayed only if the volume move operation is in the "replication" or "hard deferred" state.

Displays the Snapshot copies of the selected volume. This tab contains the following command buttons:

Snapshot Copies tab

Create Opens the Create

Snapshot Copy dialog box, which enables you to create a Snapshot copy of the selected volume.

Configuration Settings Configures the

Snapshot settings.

Delete Deletes the selected

Snapshot copy.

More Actions > Rename

Opens the Rename Snapshot Copy dialog box, which enables you to rename a selected Snapshot

сору.

More Actions > Restore Restores a Snapshot

copy.

Extend Expiry Date Extends the expiry date

of a Snapshot copy.

Refresh Updates the

information in the

window.

Displays data protection information about the selected volume.

If the source volume (read/write volume) is selected, the tab displays all of the mirror relationships, vault relationships, and mirror and vault relationships that are related to the destination volume (DP volume). If the destination volume is selected, the tab displays the relationship with the source volume.

If some or all of the cluster peer relationships of the local cluster are in an unhealthy state, the Data Protection tab might take some time to display the protection relationships relating to a healthy cluster peer relationship. Relationships relating to unhealthy cluster peer relationships are not displayed.

Data Protection tab

Storage Efficiency tab

Displays information in the following panes:

Bar graph

Displays (in graphical format) the volume space that is used by data and Snapshot copies. You can view details about the space used before and after applying settings for storage efficiency savings.

Details

Displays information about deduplication properties, including whether deduplication is enabled on the volume, the deduplication mode, the deduplication status, type, and whether inline or background compression is enabled on the volume.

Last run details

Provides details about the last-run deduplication operation on the volume. Space savings resulting from compression and deduplication operations that are applied on the data on the volume are also displayed.

Displays information about the average performance metrics, read performance metrics, and write performance metrics of the selected volume, including throughput, IOPS, and latency.

Changing the client time zone or the cluster time zone impacts the performance metrics graphs. You must refresh your browser to view the updated graphs.

Performance tab

Junction Path

You can use the Junction Path window in Storage Manager to mount or unmount FlexVol volumes to a junction in the SVM namespace.

Mounting volumes

You can use Storage Manager to mount volumes to a junction in the storage virtual machine (SVM) namespace.

About this task

 If you mount a volume to a junction path with a language setting that is different from that of the immediate parent volume in the path, NFSv3 clients cannot access some of the files because some characters might not be decoded correctly.

This issue does not occur if the immediate parent directory is the root volume.

- You can mount a SnapLock volume only under the root of the SVM.
- You cannot mount a regular volume under a SnapLock volume.

Step 1. Click Storage → Junction Path.

- Step 2. From the Junction Path on SVM list, select the SVM on which you want to mount a volume.
- Step 3. Click **Mount**, and then select the volume that is to be mounted.
- Step 4. Optional: If you want to change the default junction name, specify a new name.
- Step 5. Click **Browse**, and then select the junction path to which you want to mount the volume.
- Step 6. Click OK, and then click Mount.
- Step 7. Verify the new junction path in the **Details** tab.

Unmounting FlexVol volumes

You can use the Junction Path option of Storage pane in Storage Manager to unmount FlexVol volumes from a junction in the storage virtual machine (SVM) namespace.

- Step 1. Click Storage → Junction Path.
- Step 2. From the drop-down menu in the **SVM** field, select the SVM from which you want to unmount a volume.
- Step 3. Select the volumes that have to be unmounted, and then click **Unmount**.
- Step 4. Select the confirmation check box, and then click **Unmount**.

Changing export policies

When a volume is created, the volume automatically inherits the default export policy of the root volume of the storage virtual machine (SVM) . You can use Storage Manager to change the default export policy that is associated with the volume to redefine the client access to data.

- Step 1. Click Storage → Junction Path.
- Step 2. From the Junction Path on SVM list, select the SVM in which the volume that you want to modify resides.
- Step 3. Select the volume, and then click **Change Export Policy**.
- Step 4. Select the export policy, and then click **Change**.
- Step 5. Verify that the Export Policy column in the Junction Path window displays the export policy that you applied to the volume.

Result

The default export policy is replaced with the export policy that you selected.

Junction Path window

You can use the Junction Path menu to manage the NAS namespace of storage virtual machines (SVMs).

Command buttons

Mount Opens the Mount Volume dialog box, which enables

you to mount a volume to the junction in an SVM

namespace.

Unmount Opens the Unmount Volume dialog box, which

enables you to unmount a volume from its parent

volume.

Change Export Policy Opens the Change Export Policy dialog box, which

enables you to change the existing export policy

associated with the volume.

Refresh Updates the information in the window.

Junction Path list

Path Specifies the junction path of the mounted volume.

You can click the junction path to view the related

volumes and gtrees.

Storage Object Specifies the name of the volume mounted on the

junction path. You can also view the qtrees that the

volume contains.

Export Policy Specifies the export policy of the mounted volume.

Security Style Specifies the security style for the volume. Possible

values include UNIX (for UNIX mode bits), NTFS (for CIFS ACLs), and Mixed (for mixed NFS and CIFS

permissions).

Details tab

Displays general information about the selected volume or qtree, such as the name, type of storage object, junction path of the mounted object, and export policy. If the selected object is a qtree, details about the space hard limit, space soft limit, and space usage are displayed.

Shares

You can use Storage Manager to create, edit, and manage shares.

Creating a CIFS share

You can use Storage Manager to create a CIFS share that enables you to specify the folder, qtree, or volume that CIFS users can access.

Before you begin

You must have installed the CIFS license before you set up and start CIFS.

- Step 1. Click Storage → Shares.
- Step 2. From the Shares on SVM list, select the SVM on which you want to create a CIFS share.
- Step 3. Click Create Share.
- Step 4. In the Create Share window, click **Browse**, and then select the folder, qtree, or volume that should be shared.
- Step 5. Specify a name for the new CIFS share.
- Step 6. Optional: Select the **Enable continuous availability for Hyper-V and SQL** check box to permit SMB 3.0 and later clients that support SMB 3.0 to open files persistently during nondisruptive operations.
 - Files that are opened by using this option are protected from disruptive events such as failover, giveback, and LIF migration.
- Step 7. Select the Encrypt data while accessing this share check box to enable SMB 3.0 encryption.

Step 8. Provide a description or comment for the share, and then click Create.

Result

The CIFS share is created with the access permissions set to "Full Control for Everyone" in the group.

Stopping share access

You can use Storage Manager to stop a share when you want to remove the shared network access to a folder, gtree, or volume.

Before you begin

You must have installed the CIFS license.

- Step 1. Click Storage → Shares.
- Step 2. From the Shares on SVM list, select the SVM on which the CIFS share that you want to stop resides.
- Step 3. From the list of shares, select the share that you want to stop sharing, and then click **Stop Sharing**
- Step 4. Select the confirmation check box, and then click **Stop**.
- Step 5. Verify that the share is no longer listed in the Shares window .

Creating home directory shares

You can use Storage Manager to create a home directory share and to manage home directory search paths.

Before you begin

CIFS must be set up and started.

- Step 1. Click Storage → Shares.
- Step 2. Click **Create Home Directory**, and then provide the pattern information that determines how a user is mapped to a directory.
- Step 3. Click Create.
- Step 4. Verify that the home directory that you created is listed in the Shares window.

Editing share settings

You can use Storage Manager to modify the settings of a share such as the symbolic link settings, share access permissions of users or groups, and the type of access to the share. You can also enable or disable continuous availability of a share over Hyper-V, and enable or disable access-based enumeration (ABE).

- Step 1. Click Storage → Shares.
- Step 2. Select the share that you want to modify from the list of shares, and then click Edit .
- Step 3. In the Edit Share Settings dialog box, modify the share settings as required:
 - a. In the General tab, enable continuous availability of a share over Hyper-V. Enabling continuous availability permits SMB 3.0 and clients that support SMB 3.0 to open files persistently during nondisruptive operations. Files that are opened persistently are protected from disruptive events such as failover, giveback, and LIF migration.
 - b. In the Permissions tab, add users or groups, and then assign permissions to specify the type of access.

- In the Options tab, select the required options.
- Step 4. Click Save and Close.
- Step 5. Verify the changes that you made to the selected share in the Shares window.

How ONTAP enables dynamic home directories

ONTAP home directories enable you to configure an SMB share that maps to different directories based on the user that connects to it and a set of variables. Instead of creating separate shares for each user, you can configure one share with a few home directory parameters to define a user's relationship between an entry point (the share) and the home directory (a directory on the SVM).

A user that is logged in as a guest user does not have a home directory and cannot access other users' home directories. There are four variables that determine how a user is mapped to a directory:

Share name

This is the name of the share that you create to which the user connects. You must set the home directory property for this share.

The share name can use the following dynamic

- %w (the user's Windows user name)
- %d (the user's Windows domain name)
- %u (the user's mapped UNIX user name)

To make the share name unique across all home directories, the share name must contain either the %w or the %u variable. The share name can contain both the %d and the %w variable (for example, %d/ %w), or the share name can contain a static portion and a variable portion (for example, home %w).

This is the relative path, which is defined by the share and is therefore associated with one of the share names, that is appended to each search path to generate the user's entire home directory path from the root of the SVM. It can be static (for example, home), dynamic (for example, %w), or a combination of the two (for example, eng/%w).

This is the set of absolute paths from the root of the SVM that you specify that directs the ONTAP search for home directories. You can specify one or more search paths by using the vserver cifs home-directory search-path add command. If you specify multiple search paths, ONTAP tries them in the order specified until it finds a valid path.

This is the user's home directory that you create for the user. The directory name is usually the user's name. You must create the home directory in one of the directories that are defined by the search paths.

Share path

Search paths

Directory

As an example, consider the following setup:

User: John Smith

User domain: acme

User name: jsmith

SVM name: vs1

Home directory share name #1: home_ %w - share path: %w

• Home directory share name #2: %w - share path: %d/%w

Search path #1: /aggr0home/home

Search path #2: /aggr1home/home

Search path #3: /aggr2home/home

Home directory: /aggr1home/home/jsmith

Scenario 1: The user connects to $\vert sin the me_j smith$. This matches the first home directory share name and generates the relative path j smith. ONTAP now searches for a directory named j smith by checking each search path in order:

- /aggr0home/home/jsmith does not exist; moving on to search path #2.
- /aggr1home/home/jsmith does exist; therefore, search path #3 is not checked; the user is now connected
 to his home directory.

Scenario 2: The user connects to \\vs1\jsmith . This matches the second home directory share name and generates the relative path acme/jsmith . ONTAP now searches for a directory named acme/jsmith by checking each search path in order:

- /aggr0home/home/acme/jsmith does not exist; moving on to search path #2.
- /aggr1home/home/acme/jsmith does not exist; moving on to search path #3.
- /aggr2home/home/acme/jsmith does not exist; the home directory does not exist; therefore, the
 connection fails.

Shares window

You can use the Shares window to manage your shares and to view information about the shares.

- "Command buttons" on page 203
- "Shares list" on page 203
- " Details area" on page 204

Command buttons

Create Share Opens the Create Share dialog box, which enables

you to create a share.

Create Home Directory Opens the Create Home Directory Share dialog box,

which enables you to create a new home directory

share.

Edit Opens the Edit Settings dialog box, which enables

you to modify the properties of a selected share.

Stop Sharing Stops the selected object from being shared.

Refresh Updates the information in the window.

Shares list

The shares list displays the name and path of each share.

Share Name Displays the name of the share.

Path Displays the complete path name of an existing

folder, qtree, or volume that is shared. Path separators can be backward slashes or forward slashes, although ONTAP displays all path

separators as forward slashes.

Home Directory Displays the name of the home directory share.

Comment Displays additional descriptions of the share, if any...

Continuously Available Share Displays whether the share is enabled for

continuous availability.

Details area

The area below the shares list displays the share properties and the access rights for each share.

Properties

Name

Displays the name of the share.

Oplocks status

Specifies whether the share uses opportunistic locks (oplocks).

Browsable

Specifies whether the share can be browsed by Windows clients.

Show Snapshot

Specifies whether Snapshot copies can be viewed by clients.

Continuously Available Share

Specifies whether the share is enabled or disabled for continuous availability.

Access-Based Enumeration

Specifies whether access-based enumeration (ABE) is enabled or disabled on the share.

BranchCache

Specifies whether BranchCache is enabled or disabled on the share.

SMB Encryption

Specifies whether data encryption using SMB 3.0 is enabled at the storage virtual machine (SVM) level or at the share level. If SMB encryption is enabled at the SVM level, SMB encryption applies for all of the shares and the value is shown as Enabled (at the SVM level).

• Previous Versions

Specifies whether the previous versions can be viewed and restored from the client.

Displays the access rights of the domain users, domain groups, local users, and local groups for the share.

Share access control

LUNs

You can use Storage Manager to manage LUNs.

You can access all the LUNs in the cluster by using the LUNs tab or you can access the LUNs specific to the SVM by using $SVMs \rightarrow LUNs$.

Note: The LUNs tab is displayed only if you have enabled the FC/FCoE and iSCSI licenses.

Creating FC SAN optimized LUNs

You can use Storage Manager to create one or more FC SAN optimized LUNs during the initial setup of a cluster on an AFA platform.

Before you begin

- You must ensure that only one storage virtual machine (SVM) has been created with the name AFF_SAN_ DEFAULT_SVM, and that this SVM does not contain any LUNs.
- You must have verified that the hardware setup has been completed successfully.

ThinkSystem Storage Documentation Center: ONTAP software

About this task

- This method is available only during the initial setup of a cluster with two or more nodes.
 - Storage Manager uses only the first two nodes to create LUNs.
- Each LUN is created on a separate volume.
- Volumes are thin provisioned.
- Space reservation is disabled on the created LUNs.
- Most of the cluster configurations are already completed at the factory and are optimized for optimum storage efficiency and performance.

You must not modify these configurations.

Step 1. Log in to Storage Manager by using your cluster administrator credentials.

After you create LUNs using this method, you cannot use this method again.

If you close the dialog box without creating LUNs, you must navigate to the LUNs tab and click **Create** to access the dialog box again.

Step 2. In the LUN details area of the Create LUNs dialog box, specify the application type:

If the application type is	Then
Oracle	Specify the database name and size. If you have deployed Oracle Real Application Clusters (RAC), then select the Oracle RAC check box.
	Only two RAC nodes are supported. You must ensure that Oracle RAC has a minimum of two initiators added to the initiator group.
SQL	Specify the number of databases and the size of each database.
Other	Specify the name and size of each LUN. If you want to create more LUNs, click Add more LUNs, and then specify the name and size for each LUN.

Data, log, binary, and temporary LUNs are created based on the selected application type.

Step 3. In the Map to these Initiators area, perform these steps:

- a. Specify the initiator group name and the type of operating system.
- b. Add the host initiator WWPN by selecting it from the drop-down list or by typing the initiator in the text box.

Only one initiator group is created.

Step 4. Click Create.

A summary table is displayed with the LUNs that are created.

Step 5. Click Close.

Application-specific LUN settings

Storage Manager supports Oracle, SQL, and other application types while creating FC SAN optimized LUNs on an AFA cluster. LUN settings such as the LUN size are determined by rules specific to the application type. For SQL and Oracle, LUN settings are automatically created.

If your cluster contains two or more nodes, Storage Manager uses only the first two nodes selected by the API to create LUNs. Data aggregates are already created in each of the two nodes. The size of each volume created is equal to the available capacity of the aggregate. The volumes are thin-provisioned and space reservation is disabled on the LUNs.

Storage efficiency policy is enabled by default with the schedule set to "daily" and quality of service (QoS) set to "best_effort". By default, access time (atime) update is enabled on the cluster. However, access time updates are disabled by Storage Manager while creating volumes and therefore every time a file is read or written, the access time field in the directory is not updated.

Note: Enabling the access time update causes performance degradation to the data-serving capability of the cluster.

LUN settings for SQL

By default, LUNs and volumes are provisioned for a single instance of the SQL server with 2 databases of 1 TB each and 24 physical cores. Space is provisioned for LUNs and volumes according to specific rules for the SQL server. Load balancing is performed for LUNs across the HA pair. You can modify the number of databases. For each database, eight data LUNs and one log LUN is created. One temporary LUN is created for each SQL instance.

The following table provides information about how space is provisioned for the default values of SQL:

Node	Aggregate	LUN type	Volume name	LUN name	Formula for LUN size	LUN size (GB)
node1	node1_aggr1	data	db01_data01	db01_data01	Database size ÷ 8	125
		data	db01_data02	db01_data02	Database size ÷ 8	125
		data	db01_data03	db01_data03	Database size ÷ 8	125
		data	db01_data04	db01_data04	Database size ÷ 8	125
		data	db02_data01	db02_data01	Database size ÷ 8	125
		data	db02_data02	db02_data02	Database size ÷ 8	125
		data	db02_data03	db02_data03	Database size ÷ 8	125

Node	Aggregate	LUN type	Volume name	LUN name	Formula for LUN size	LUN size (GB)
		data	db02_data04	db02_data04	Database size ÷ 8	125
		log	db01_log	db01_log	Database size ÷ 20	50
		temp	sql_temp	sql_temp	Database size ÷ 3	330
node2	node2_aggr1	data	db01_data05	db01_data05	Database size ÷ 8	125
		data	db01_data06	db01_data06	Database size ÷ 8	125
		data	db01_data07	db01_data07	Database size ÷ 8	125
		data	db01_data08	db01_data08	Database size ÷ 8	125
		data	db02_data05	db02_data05	Database size ÷ 8	125
		data	db02_data06	db02_data06	Database size ÷ 8	125
		data	db02_data07	db02_data07	Database size ÷ 8	125
		data	db02_data08	db02_data08	Database size ÷ 8	125
		log	db02_log	db02_log	Database size ÷ 20	50

LUN settings for Oracle

By default, LUNs and volumes are provisioned for one database of 2 TB. Space is provisioned for LUNs and volumes according to specific rules for Oracle. By default, Oracle Real Application Clusters (RAC) is not selected.

The following table provides information about how space is provisioned for the default values of Oracle:

Node	Aggregate	LUN type	Volume name	LUN name	Formula for LUN size	LUN size (GB)
node1	node1_aggr1	data	ora_vol01	ora_lundata01	Database size ÷ 8	250
		data	ora_vol02	ora_lundata02	Database size ÷ 8	250
		data	ora_vol03	ora_lundata03	Database size ÷ 8	250
		data	ora_vol04	ora_lundata04	Database size ÷ 8	250
		log	ora_vol05	ora_lunlog1	Database size ÷ 40	50
		binaries	ora_vol06	ora_orabin1	Database size ÷ 40	50

Node	Aggregate	LUN type	Volume name	LUN name	Formula for LUN size	LUN size (GB)
node2	node2_aggr1	data	ora_vol07	ora_lundata05	Database size ÷ 8	250
		data	ora_vol08	ora_lundata06	Database size ÷ 8	250
		data	ora_vol09	ora_lundata07	Database size ÷ 8	250
		data	ora_vol10	ora_lundata08	Database size ÷ 8	250
		log	ora_vol11	ora_lunlog2	Database size ÷ 40	50

For Oracle RAC, LUNs are provisioned for grid files. Only two RAC nodes are supported for Oracle RAC.

The following table provides information about how space is provisioned for the default values of Oracle RAC:

Node	Aggregate	LUN type	Volume name	LUN name	Formula for LUN size	LUN size (GB)
node1	node1_aggr1	data	ora_vol01	ora_lundata01	Database size ÷ 8	250
		data	ora_vol02	ora_lundata02	Database size ÷ 8	250
		data	ora_vol03	ora_lundata03	Database size ÷ 8	250
		data	ora_vol04	ora_lundata04	Database size ÷ 8	250
		log	ora_vol05	ora_lunlog1	Database size ÷ 40	50
		binaries	ora_vol06	ora_orabin1	Database size ÷ 40	50
		grid	ora_vol07	ora_lungrid1	10 GB	10
node2	node2_aggr1	data	ora_vol08	ora_lundata05	Database size ÷ 8	250
		data	ora_vol09	ora_lundata06	Database size ÷ 8	250
		data	ora_vol10	ora_lundata07	Database size ÷ 8	250
		data	ora_vol11	ora_lundata08	Database size ÷ 8	250
		log	ora_vol12	ora_lunlog2	Database size ÷ 40	50
		binaries	ora_vol13	ora_orabin2	Database size ÷ 40	50

LUN settings for Other application type

Each LUN is provisioned in a volume. The space is provisioned in the LUNs based on the specified size. Load balancing is performed across the nodes for all the LUNs.

Creating LUNs

You can use Storage Manager to create LUNs for an existing aggregate, volume, or qtree when there is available free space. You can create a LUN in an existing volume or create a new FlexVol volume for the LUN. You can also enable storage Quality of Service (QoS) to manage the workload performance.

About this task

If you specify the LUN ID, Storage Manager checks the validity of the LUN ID before adding it. If you do not specify a LUN ID, ONTAP software automatically assigns one.

While selecting the LUN multiprotocol type, you should have considered the guidelines for using each type. The LUN Multiprotocol Type, or operating system type, determines the layout of data on the LUN, and the minimum and maximum sizes of the LUN. After the LUN is created, you cannot modify the LUN host operating system type.

In a MetroCluster configuration, Storage Manager displays only the following aggregates for creating FlexVol volumes for the LUN:

- In normal mode, when you create volumes on sync-source SVMs or data-serving SVMs in the primary site, only those aggregates that belong to the cluster in the primary site are displayed.
- In switched-over mode, when you create volumes on sync-destination SVMs or data-serving SVMs in the surviving site, only switched-over aggregates are displayed.
- Step 1. Click Storage → LUNs.
- Step 2. In the LUN Management tab, click Create.
- Step 3. Browse and select an SVM in which you want to create the LUNs.
- Step 4. In the Create LUN Wizard, specify the name, size, type, description for the LUN, and select the **Space Reserve**, and then click **Next**.
- Step 5. Create a new FlexVol volume for the LUN or select an existing volume or qtree, and then click **Next**
- Step 6. Add initiator groups if you want to control host access to the LUN, and then click Next.
- Step 7. Select the **Manage Storage Quality of Service** check box if you want to manage the workload performance of the LUN.
- Step 8. Create a new storage QoS policy group or select an existing policy group to control the input/output (I/O) performance of the LUN:

If you want to	Do this
Create a new policy group	 Select New Policy Group Specify the policy group name. Specify the minimum throughput limit. You can set the minimum throughput limit only on an AFA platform. You cannot set the minimum throughput limit for volumes on a FabricPool-enabled aggregate. If you do not specify the minimum throughput value or if the minimum throughput value is set to 0, the system automatically displays "None" as the value.
Select an existing policy group	not affect the maximum throughput. 1. Select Existing Policy Group, and then click Choose to select an existing policy group from the Select Policy Group dialog box.
	 2. Specify the minimum throughput limit. You can set the minimum throughput limit only on an AFA platform. You cannot set the minimum throughput limit for volumes on a FabricPool-enabled aggregate. If you do not specify the minimum throughput value or if the minimum throughput value is set to 0, the system automatically displays "None" as the value.

If you want to	Do this	
	This value is case-sensitive.	
	Specify the maximum throughput limit to ensure that the workload of the objects in the policy group does not exceed the specified throughput limit.	
	 The minimum throughput limit and the maximum throughput limit must be of the same unit type. 	
	 If you do not specify the minimum throughput limit, then you can set the maximum throughput limit in IOPS and B/s, KB/s, MB/s, and so on. 	
	 If you do not specify the maximum throughput value, the system automatically displays "Unlimited" as the value and this value is case- sensitive. 	
	The unit that you specify does not affect the maximum throughput.	
	If the policy group is assigned to more than one object, the maximum throughput that you specify is shared among the objects.	

- Review the specified details in the LUN summary window, and then click Next.
- Step 10. Confirm the details, and then click Finish to complete the wizard.

Deleting LUNs

You can use Storage Manager to delete LUNs and return the space used by the LUNs to their containing aggregates or volumes.

Before you begin

- The LUN must be offline.
- The LUN must be unmapped from all initiator hosts.
- Click Storage → LUNs . Step 1.
- Step 2. In the LUN Management tab, select one or more LUNs that you want to delete, and then click Delete .
- Select the confirmation check box, and then click **Delete** . Step 3.

Creating initiator groups

You can use Storage Manager to create an initiator group. Initiator groups enable you to control host access to specific LUNs. You can use port sets to limit which LIFs an initiator can access.

- Step 1. Click Storage → LUNs.
- Step 2. In the Initiator Groups tab, click Create.

- Step 3. In the General tab of the Create Initiator Group dialog box, specify the initiator group name, operating system, port set, and supported protocol for the group.
- Step 4. Click Create.

Deleting initiator groups

You can use the Initiator Groups tab in Storage Manager to delete initiator groups.

Before you begin

All the LUNs mapped to the initiator group must be manually unmapped.

- Step 1. Click Storage → LUNs.
- Step 2. In the Initiator Groups tab, select one or more initiator groups that you want to delete, and then click **Delete**.
- Step 3. Click **Delete**.
- Step 4. Verify that the initiator groups you deleted are no longer displayed in the Initiator Groups tab.

Adding initiators

You can use Storage Manager to add initiators to an initiator group. An initiator provides access to a LUN when the initiator group that it belongs to is mapped to that LUN.

- Step 1. Click Storage → LUNs.
- Step 2. In the LUN Management tab, select the initiator group to which you want to add initiators and click **Edit** .
- Step 3. In the Edit Initiator Group dialog box, click **Initiators**.
- Step 4. Click Add.
- Step 5. Specify the initiator name and click **OK**.
- Step 6. Click Save and Close.

Deleting initiators from an initiator group

You can use the Initiator Groups tab in Storage Manager to delete an initiator. To delete an initiator from an initiator group, you must disassociate the initiator from the initiator group.

Before you begin

All of the LUNs that are mapped to the initiator group that contains the initiator that you want to delete must be manually unmapped.

- Step 1. Click Storage → LUNs.
- Step 2. In the Initiator Groups tab, select the initiator group from which you want to delete the initiator, and then click **Edit**.
- Step 3. In the Edit Initiator Group dialog box, click the **Initiators** tab.
- Step 4. Select and delete the initiator from the text box, and click **Save** . The initiator is disassociated from the initiator group.

Creating port sets

You can use Storage Manager to create port sets to limit access to your LUNs.

- Step 1. Click Storage → LUNs.
- Step 2. In the Portsets tab, click Create.
- Step 3. In the Create Portset dialog box, select the type of protocol.
- Step 4. Choose the network interface that you want to associate with the port set.
- Step 5. Click Create.

Deleting port sets

You can use Storage Manager to delete a port set when it is no longer required.

- Step 1. Click Storage → LUNs.
- Step 2. In the Portsets tab, select one or more port sets and click **Delete**.
- Step 3. Confirm the deletion by clicking **Delete**.

Cloning LUNs

LUN clones enable you to create multiple readable and writable copies of a LUN. You can use Storage Manager to create a temporary copy of a LUN for testing or to make a copy of your data available to additional users without providing them access to the production data.

Before you begin

- You must have installed the FlexClone license on the storage system.
- When space reservation is disabled on a LUN, the volume that contains the LUN must have enough space to accommodate changes to the clone.

About this task

 When you create a LUN clone, automatic deletion of the LUN clone is enabled by default in Storage Manager.

The LUN clone is deleted when ONTAP triggers automatic deletion to conserve space.

- You cannot clone LUNs that are on SnapLock volumes.
- Step 1. Click Storage → LUNs.
- Step 2. In the LUN Management tab, select the LUN that you want to clone, and then click Clone.
- Step 3. Optional: If you want to change the default name, specify a new name for the LUN clone.
- Click Clone. Step 4.
- Step 5. Verify that the LUN clone that you created is listed in the LUNs window.

Editing LUNs

You can use the LUN properties dialog box in Storage Manager to change the name, description, size, space reservation setting, or the mapped initiator hosts of a LUN.

About this task

When you resize a LUN, you have to perform the steps on the host side that are recommended for the host type and the application that is using the LUN.

- Step 1. Click Storage → LUNs.
- Step 2. In the LUN Management tab, select the LUN that you want to edit from the list of LUNs, and click Edit.

- Step 3. Make the required changes.
- Step 4. Click Save and Close.

Bringing LUNs online

You can use the **LUN Management** tab in Storage Manager to bring selected LUNs online and make them available to the host.

Before you begin

Any host application accessing the LUN must be quiesced or synchronized.

- Step 1. Click Storage → LUNs.
- Step 2. In the LUN Management tab, select one or more LUNs that you want to bring online.
- Step 3. Click Status → Online.

Taking LUNs offline

You can use the **LUN Management** tab in Storage Manager to take selected LUNs offline and make them unavailable for block protocol access.

Before you begin

Any host application accessing the LUN must be quiesced or synchronized.

- Step 1. Click Storage → LUNs.
- Step 2. In the **LUN Management** tab, select one or more LUNs that you want to take offline.
- Step 3. Click Status → Offline.

Moving LUNs

You can use Storage Manager to move a LUN from its containing volume to another volume or qtree within a storage virtual machine (SVM). You can move the LUN to a volume that is hosted on an aggregate containing high-performance disks, thereby improving the performance when accessing the LUN.

About this task

- You cannot move a LUN to a gtree within the same volume.
- If you have created a LUN from a file using the command-line interface (CLI), you cannot move the LUN using Storage Manager.
- The LUN move operation is nondisruptive; it can be performed when the LUN is online and serving data.
- You cannot use Storage Manager to move the LUN if the allocated space in the destination volume is not sufficient to contain the LUN, and even if autogrow is enabled on the volume.

You should use the CLI instead.

- You cannot move LUNs on SnapLock volumes.
- Step 1. Click Storage → LUNs.
- Step 2. In the LUN Management tab, select the LUN that you want to move from the list of LUNs, and then click **Move** .
- Step 3. Optional: In the **Move Options** area of the Move LUN dialog box, specify a new name for the LUN if you want to change the default name.

Step 4. Select the storage object to which you want to move the LUN and perform one of the following actions:

If you want to move the LUN to	Then
A new volume	Select an aggregate in which you want to create the new volume.
	2. Specify a name for the volume.
An existing volume or qtree	Select a volume to which you want to move the LUN.
	If the selected volume contains any qtrees, select the qtree to which you want to move the LUN.

- Step 5. Click Move.
- Step 6. Confirm the LUN move operation, and click Continue.

For a brief period of time, the LUN is displayed on both the origin and destination volume. After the move operation is complete, the LUN is displayed on the destination volume.

The destination volume or qtree is displayed as the new container path for the LUN.

Assigning LUNs to storage QoS

You can use Storage Manager to limit the throughput of LUNs by assigning them to storage Quality of Service (QoS) policy groups. You can assign storage QoS for new LUNs or modify storage QoS details for LUNs that are already assigned to a policy group.

About this task

- You cannot assign storage QoS to a LUN if the following storage objects are assigned to a policy group:
 - Parent volume of the LUN
 - Parent storage virtual machine (SVM) of the LUN
- You can assign storage QoS or modify the QoS details for a maximum of 10 LUNs simultaneously.
- Step 1. Click Storage → LUNs.
- Step 2. In the LUN Management tab, select one or more LUNs for which you want to assign storage QoS.
- Step 3. Click Storage QoS.
- Step 4. In the Quality of Service Details dialog box, select the **Manage Storage Quality of Service** check box if you want to manage the workload performance of the LUN.

 If some of the LUNs that you selected are already assigned to a policy group, the changes that you make might affect the performance of these LUNs.
- Step 5. Create a new storage QoS policy group or select an existing policy group to control the input/output (I/O) performance of the LUN:

If you want to	Do this
If you want to Create a new policy group	 Select New Policy Group . Specify the policy group name. Specify the minimum throughput limit. You can set the minimum throughput limit only on an AFA platform. You cannot set the minimum throughput limit for volumes on a FabricPool-enabled aggregate. If you do not specify the minimum throughput value or if the minimum throughput value is set to 0, the system automatically displays "None" as the value. This value is case-sensitive. Specify the maximum throughput limit to ensure that the workload of the objects in the policy group does not exceed the specified throughput limit. The minimum throughput limit and the maximum throughput limit must be of the same unit type. If you do not specify the minimum throughput limit, then you can set the maximum throughput limit in IOPS and B/s, KB/s, MB/s, and so on. If you do not specify the maximum throughput value, the system automatically displays "Unlimited" as the value and this value is case-sensitive.
	The unit that you specify does not affect the maximum throughput.
Select an existing policy group	 Select Existing Policy Group, and then click Choose to select an existing policy group from the Select Policy Group dialog box. Specify the minimum throughput limit.
	 You can set the minimum throughput limit only on an AFA platform. You cannot set the minimum throughput limit for volumes on a
	 FabricPool-enabled aggregate. If you do not specify the minimum throughput value or if the minimum throughput value is set to 0, the system

If you want to	Do this	
	automatically displays " None " as the value.	
	This value is case-sensitive.	
	 Specify the maximum throughput limit to ensure that the workload of the objects in the policy group does not exceed the specified throughput limit. 	
	 The minimum throughput limit and the maximum throughput limit must be of the same unit type. 	
	 If you do not specify the minimum throughput limit, then you can set the maximum throughput limit in IOPS and B/s, KB/s, MB/s, and so on. 	
	 If you do not specify the maximum throughput value, the system automatically displays "Unlimited" as the value and this value is case- sensitive. 	
	The unit that you specify does not affect the maximum throughput.	
	If the policy group is assigned to more than one object, the maximum throughput that you specify is shared among the objects.	

- Optional: Click the link that specifies the number of LUNs to review the list of selected LUNs, and Step 6. click **Discard** if you want to remove any LUNs from the list. The link is displayed only when multiple LUNs are selected.
- Step 7. Click OK.

Editing initiator groups

You can use the Edit Initiator Group dialog box in Storage Manager to change the name of an existing initiator group and its operating system. You can add initiators to or remove initiators from the initiator group. You can also change the port set associated with the initiator group.

- Step 1. Click Storage → LUNs.
- In the Initiator Groups tab, select the initiator group that you want to modify, and then click **Edit**. Step 2.
- Step 3. Make the necessary changes.
- Step 4. Click Save and Close.
- Step 5. Verify the changes you made to the initiator group in the Initiator Groups tab.

Editing initiators

You can use the Edit Initiator Group dialog box in Storage Manager to change the name of an existing initiator in an initiator group.

Step 1. Click Storage → LUNs.

- Step 2. In the Initiator Groups tab, select the initiator group to which the initiator belongs, and then click **Edit** .
- Step 3. In the Edit Initiator Group dialog box, click Initiators.
- Step 4. Select the initiator that you want to edit and click Edit .
- Step 5. Change the name and click **OK**.
- Step 6. Click Save and Close.

Editing port sets

You can use the Portsets tab in Storage Manager to edit settings related to port sets.

- Step 1. Click Storage → LUNs.
- Step 2. In the Portsets tab, select the port set you want to edit and click Edit .
- Step 3. In the Edit Portset dialog box, make the necessary changes.
- Step 4. Click Save and Close.

Viewing LUN information

You can use the LUN Management tab in Storage Manager to view details about a LUN, such as its name, status, size, and type.

- Step 1. Click Storage → LUNs.
- Step 2. In the LUN Management tab, select the LUN that you want to view information about from the displayed list of LUNs.
- Step 3. Review the LUN details in the LUNs window.

Viewing initiator groups

You can use the Initiator Groups tab in Storage Manager to view all the initiator groups and the initiators mapped to these initiator groups, and the LUNs and LUN ID mapped to the initiator groups.

- Step 1. Click Storage → LUNs.
- Step 2. Click Initiator Groups and review the initiator groups that are listed in the upper pane.
- Step 3. Select an initiator group to view the initiators that belong to it, which are listed in the Initiators tab in the lower pane.
- Step 4. Select an initiator group to view the LUNs mapped to it, which are listed in the Mapped LUNs in the lower pane.

Guidelines for working with FlexVol volumes that contain LUNs

When you work with FlexVol volumes that contain LUNs, you must change the default settings for Snapshot copies. You can also optimize the LUN layout to simplify administration.

Snapshot copies are required for many optional features such as SnapMirror, SyncMirror, dump and restore, and ndmpcopy.

When you create a volume, ONTAP automatically performs the following:

- Reserves 5 percent of the space for Snapshot copies
- Schedules Snapshot copies

Because the internal scheduling mechanism for creating Snapshot copies within ONTAP does not ensure that the data within a LUN is in a consistent state, you should change these Snapshot copy settings by performing the following tasks:

- Turn off the automatic Snapshot copy schedule.
- · Delete all of the existing Snapshot copies.
- Set the percentage of space reserved for Snapshot copies to zero.

You should use the following guidelines to create volumes that contain LUNs:

- Do not create any LUNs in the system's root volume.
 - ONTAP uses this volume to administer the storage system. The default root volume is /vol/vol0.
- You should use a SAN volume to contain the LUN.
- You should ensure that no other files or directories exist in the volume that contains the LUN.
 - If this is not possible and you are storing LUNs and files in the same volume, you should use a separate gtree to contain the LUNs.
- If multiple hosts share the same volume, you should create a qtree on the volume to store all of the LUNs for the same host.
 - This is a best practice that simplifies LUN administration and tracking.
- To simplify management, you should use naming conventions for LUNs and volumes that reflect their ownership or the way that they are used.

Understanding space reservations for LUNs

Understanding how the space reservation setting (combined with the volume guarantee) affects how space is set aside for LUNs helps you to understand the ramifications of disabling space reservations, and why certain combinations of LUN and volume settings are not useful.

When a LUN has space reservations enabled (a space-reserved LUN), and its containing volume has a volume guarantee, free space from the volume is set aside for the LUN at creation time; the size of this reserved space is governed by the size of the LUN. Other storage objects in the volume (other LUNs, files, Snapshot copies, and so on) are prevented from using this space.

When a LUN has space reservations disabled (a non-space-reserved LUN), no space is set aside for that LUN at creation time. The storage required by any write operation to the LUN is allocated from the volume when it is needed, provided sufficient free space is available.

If a space-reserved LUN is created in a none-guaranteed volume, the LUN behaves the same as a non-space-reserved LUN. This is because a none-guaranteed volume has no space to allocate to the LUN; the volume itself can only allocate space as it is written to, due to its none guarantee. Therefore, creating a space-reserved LUN in a none-guaranteed volume is not recommended; employing this configuration combination might provide write guarantees that are in fact impossible.

When the space reserve is set to "Default", the ONTAP space reservation settings apply to the LUNs. ONTAP space reservation settings also apply to the container volumes if new volumes are created.

Guidelines for using LUN multiprotocol type

The LUN multiprotocol type, or operating system type, specifies the operating system of the host accessing the LUN. It also determines the layout of data on the LUN, and the minimum and maximum size of the LUN.

Note: Not all ONTAP versions support all LUN multiprotocol types. For the latest information, see Lenovo Storage Interoperation Center (LSIC).

The following table describes the LUN multiprotocol type values and the guidelines for using each type:

LUN multiprotocol type	When to use
AIX	If your host operating system is AIX.
HP-UX	If your host operating system is HP-UX.
Hyper-V	If you are using Windows Server 2008 or Windows Server 2012 Hyper-V and your LUNs contain virtual hard disks (VHDs). If you are using hyper_v for your LUN type, you should also use hyper_v for your igroup OS type. Note: For raw LUNs, you can use the type of child operating system that the LUN multiprotocol type uses.
Linux	If your host operating system is Linux.
NetWare	If your host operating system is NetWare.
OpenVMS	If your host operating system is OpenVMS.
Solaris	If your host operating system is Solaris and you are not using Solaris EFI labels.
Solaris EFI	If you are using Solaris EFI labels. Note: Using any other LUN multiprotocol type with Solaris EFI labels might result in LUN misalignment problems.
VMware	If you are using an ESX Server and your LUNs will be configured with VMFS. Note: If you configure the LUNs with RDM, you can use the guest operating system as the LUN multiprotocol type.
Windows 2003 MBR	If your host operating system is Windows Server 2003 using the MBR partitioning method.
Windows 2003 GPT	If you want to use the GPT partitioning method and your host is capable of using it. Windows Server 2003, Service Pack 1 and later are capable of using the GPT partitioning method, and all 64-bit versions of Windows support it.
Windows 2008 or later	If your host operating system is Windows Server 2008 or later; both MBR and GPT partitioning methods are supported.
Xen	If you are using Xen and your LUNs will be configured with Linux LVM with Dom0. Note: For raw LUNs, you can use the type of guest operating system that the LUN multiprotocol type uses.

Understanding LUN clones

LUN clones are writable, space-efficient clones of parent LUNs. Creating LUN clones is highly space-efficient and time-efficient because the cloning operation does not involve physically copying any data. Clones help in space storage utilization of the physical aggregate space.

You can clone a complete LUN without the need of a backing Snapshot copy in a SAN environment. The cloning operation is instantaneous and clients that are accessing the parent LUN do not experience any disruption or outage. Clients can perform all normal LUN operations on both parent entities and clone entities. Clients have immediate read/write access to both the parent and cloned LUN.

Clones share the data blocks of their parent LUNs and occupy negligible storage space until clients write new data either to the parent LUN, or to the clone. By default, the LUN clone inherits the space reserved

attribute of the parent LUN. For example, if space reservation is disabled on the parent LUN, then space reservation is also disabled on the LUN clone.

Note: When you clone a LUN, you must ensure that the volume has enough space to contain the LUN clone.

Initiator hosts

Initiator hosts can access the LUNs mapped to them. When you map a LUN on a storage system to the igroup, you grant all the initiators in that group access to that LUN. If a host is not a member of an igroup that is mapped to a LUN, that host does not have access to the LUN.

igroup name

The igroup name is a case-sensitive name that must satisfy several requirements.

The igroup name:

- Contains 1 to 96 characters. Spaces are not allowed.
- Can contain the letters A through Z, a through z, numbers 0 through 9, hyphen ("-"), underscore ("_"), colon (":"), and period (".").
- Must start with a letter or number.

The name you assign to an igroup is independent of the name of the host that is used by the host operating system, host files, or Domain Name Service (DNS). If you name an igroup aix1, for example, it is not mapped to the actual IP host name (DNS name) of the host.

Note: You might find it useful to provide meaningful names for igroups, ones that describe the hosts that can access the LUNs mapped to them.

igroup type

The igroup type can be mixed type, iSCSI, or FC/FCoE.

igroup ostype

The ostype indicates the type of host operating system used by all of the initiators in the igroup. All initiators in an igroup must be of the same ostype. The ostypes of initiators are solaris, windows, hpux, aix, netware, xen, hyper_v, vmware, and linux.

You must select an ostype for the igroup.

LUNs window

You can use the LUNs window to create and manage LUNs and to display information about LUNs. You can also add, edit, or delete initiator groups and initiator IDs.

- "LUN Management tab" on page 222
- "Initiator Groups tab" on page 224
- " Portsets tab " on page 225

LUN Management tab

This tab enables you to create, clone, delete, move, or edit the settings of LUNs. You can also assign LUNs to a Storage Quality of Service (QoS) policy group.

Command buttons

Create Opens the Create LUN wizard, which enables you to

create LUNs.

In a cluster on an AFA platform that does not contain any existing LUNs, the Create FC SAN optimized LUNs dialog box is opened, which enables you to set up one or more FC SAN

optimized LUNs.

Clone Opens the Clone LUN dialog box, which enables

you to clone the selected LUNs.

Edit Opens the Edit LUN dialog box, which enables you

to edit the settings of the selected LUN.

Deletes the selected LUN.

Status Enables you to change the status of the selected

LUN to either Online or Offline.

Move Opens the Move LUN dialog box, which enables

you to move the selected LUN to a new volume or an existing volume or qtree within the same storage

virtual machine (SVM).

Storage QoS Opens the Quality of Service details dialog box,

which enables you to assign one or more LUNs to a

new or existing policy group.

Refresh Updates the information in the window.

LUNs list

Name Displays the name of the LUN.

SVM Displays the name of the storage virtual machine

(SVM) in which the LUN is created.

Container Path Displays the name of the file system (volume or

qtree) that contains the LUN.

Space Reservation Specifies whether space reservation is enabled or

disabled.

Available Size Displays the space available in the LUN.

Total Size Displays the total space in the LUN.

%Used Displays the total space (in percentage) that is used.

Type Specifies the LUN type.

Status Specifies the status of the LUN.

Policy Group Displays the name of the Storage QoS policy group

to which the LUN is assigned. By default, this

column is hidden.

Application Displays the name of the application that is

assigned to the LUN.

Details area

The area below the LUNs list displays details related to the selected LUN.

Details tab Displays details related to the LUN such as the LUN

serial number, whether the LUN is a clone, LUN description, the policy group to which the LUN is assigned, minimum throughput of the policy group, maximum throughput of the policy group, details about the LUN move operation, and the application assigned to the LUN. You can also view details about the initiator groups and initiators that are

associated with the selected LUN.

Performance tab Displays performance metrics graphs of the LUNs,

including data rate, IOPS, and response time.

Changing the client time zone or the cluster time zone impacts the performance metrics graphs. Refresh your browser to see the updated graphs.

Initiator Groups tab

This tab enables you to create, delete, or edit the settings of initiator groups and initiator IDs.

Command buttons

Create Opens the Create Initiator Group dialog box, which

enables you to create initiator groups to control host

access to specific LUNs.

Edit Opens the Edit Initiator Group dialog box, which

enables you to edit the settings of the selected

initiator group.

Delete Deletes the selected initiator group.

Refresh Updates the information in the window.

Initiator Groups list

Name Displays the name of the initiator group.

Type Specifies the type of protocol supported by the

initiator group. The supported protocols are iSCSI,

FC/FCoE, or Mixed (iSCSI and FC/FCoE).

Operating System Specifies the operating system for the initiator

group.

Portset Displays the port set that is associated with the

initiator group.

Initiator Count Displays the number of initiators added to the

initiator group.

Details area

The area below the Initiator Groups list displays details about the initiators that are added to the selected initiator group and the LUNs that are mapped to the initiator group.

Portsets tab

This tab enables you to create, delete, or edit the settings of port sets.

Command buttons

Create Opens the Create Portset dialog box, which enables

you to create port sets to limit access to your LUNs.

Edit Opens the Edit Portset dialog box, which enables

you to select the network interfaces that you want

to associate with the port set.

Deletes the selected port set.

Refresh Updates the information in the window.

Portsets list

Portset Name Displays the name of the port set.

Type Specifies the type of protocol supported by the port

set. The supported protocols are iSCSI, FC/FCoE,

or Mixed (iSCSI and FC/FCoE).

Interface Count Displays the number of network interfaces that are

associated with the port set.

Initiator Group Count Displays the number of initiator groups that are

associated with the port set.

Details area

The area below the Portsets list displays details about the network interfaces and initiator groups associated with the selected port set.

Qtrees

You can use Storage Manager create, edit, and delete Qtrees.

Creating qtrees

Qtrees enable you to manage and partition your data within a volume. You can use the Create Qtree dialog box in Storage Manager to add a new qtree to a volume on your storage system.

- Step 1. Click Storage → Qtrees.
- Step 2. From the Qtrees on SVM list, select the storage virtual machine (SVM) on which you want to create a qtree.
- Step 3. Click Create.
- Step 4. In the Details tab of the Create Qtree dialog box, type a name for the qtree.
- Step 5. Select the volume to which you want to add the qtree.

The Volume browse list includes only the volumes that are online.

- Step 6. If you want to disable opportunistic locks (oplocks) for the qtree, clear the **Enable Oplocks for files and directories in this Qtree** check box.

 By default, oplocks are enabled for each otree.
- Step 7. If you want to change the default inherited security style, select a new security style.

 The default security style of the qtree is the security style of the volume that contains the qtree.
- Step 8. If you want to change the default inherited export policy, either select an existing export policy or create an export policy.The default export policy of the qtree is the export policy that is assigned to the volume that
- Step 9. If you want to restrict the disk space usage, click the **Quotas** tab.
 - a. If you want to apply quotas on the qtree, click Qtree quota, and then specify the disk space limit.
 - b. If you want to apply quotas for all the users on the qtree, click **User quota**, and then specify the disk space limit.
- Step 10. Click Create.
- Step 11. Verify that the qtree that you created is included in the list of qtrees in the Qtrees window.

Deleting atrees

You can delete a qtree and reclaim the disk space that the qtree uses within a volume by using Storage Manager. When you delete a qtree, all of the quotas that are applicable to that qtree are no longer applied by ONTAP.

Before you begin

The qtree status must be normal.

contains the atree.

- The atree must not contain any LUN.
- Step 1. Click Storage → Qtrees.
- Step 2. In the Qtrees window, select one or more qtrees that you want to delete, and then click **Delete**.
- Step 3. Select the confirmation check box, and then click **Delete**.
- Step 4. Verify that the qtree that you deleted is no longer included in the list of qtrees in the Qtrees window

Editing qtrees

You can use Storage Manager to modify the properties of a qtree such as the security style, enable or disable opportunistic locks (oplocks), and assign a new or existing export policy.

- Step 1. Click Storage → Qtrees.
- Step 2. Select the gtree that you want to edit, and then click Edit.
- Step 3. In the Edit Qtree dialog box, edit the following properties as required:
 - Oplocks
 - Security style
 - Export policy
- Step 4. Click Save.
- Step 5. Verify the changes that you made to the selected qtree in the Qtrees window.

Assigning export policies to qtrees

Instead of exporting an entire volume, you can export a specific qtree on a volume to make it directly accessible to clients. You can use Storage Manager to export a qtree by assigning an export policy to the qtree. You can assign an export policy to one or more qtrees from the Qtrees window.

- Step 1. Click Storage → Qtrees.
- Step 2. From the Qtrees on SVM list, select the storage virtual machine (SVM) on which the qtrees that you want to export reside.
- Step 3. Select one or more qtrees for which you want to assign an export policy, and then click **Change Export Policy**.
- Step 4. In the Export Policy dialog box, either create an export policy or select an existing export policy. "Creating an export policy " on page 251
- Step 5. Click Save.
- Step 6. Verify that the export policy and its related export rules that you assigned to the qtrees are displayed in the Details tab of the appropriate qtrees.

Viewing qtree information

You can use the Qtrees window in Storage Manager to view the volume that contains the qtree, the name, security style, and status of the qtree, and the oplocks status.

- Step 1. Click Storage → Qtrees.
- Step 2. From the drop-down menu in the **SVM** field, select the storage virtual machine (SVM) on which the gtree about which you want to view information resides.
- Step 3. Select the gtree from the displayed list of gtrees.
- Step 4. Review the gtree details in the Qtrees window.

Qtree options

A qtree is a logically defined file system that can exist as a special subdirectory of the root directory within a FlexVol volume and are used to manage and partition data within the volume.

Note: Qtrees are not available for Infinite Volumes.

You can specify the following options when creating a qtree:

- · Name of the gtree
- Volume in which you want the qtree to reside
- Oplocks

By default, oplocks are enabled for the qtree. If you disable oplocks for the entire storage system, oplocks are not set even if you enable oplocks on a per-qtree basis

Security style

The security style can be UNIX, NTFS, or Mixed (UNIX and NTFS). By default, the security style of the atree is the same as that of the selected volume.

Export policy

Create a new export policy or select an existing policy. By default, the export policy of the qtree is same as that of the selected volume.

• Space usage limits for qtree and user quotas

Qtrees window

You can use the Qtrees window to create, display, and manage information about qtrees.

- " Command buttons" on page 228
- " Qtree list" on page 228
- " Details area" on page 228

Command buttons

Create Opens the Create Qtree dialog box, which enables

you to create a new qtree.

Edit Opens the Edit Qtree dialog box, which enables

you to change the security style and to enable or disable oplocks (opportunistic locks) on a qtree.

Change Export Policy Opens the Export Policy dialog box, which enables

you to assign one or more qtrees to new or existing

export policies.

Deletes the selected qtree.

This button is disabled unless the status of the

selected atree is normal.

Refresh Updates the information in the window.

Qtree list

The gtree list displays the volume in which the gtree resides and the gtree name.

Name Displays the name of the gtree.

Volume Displays the name of the volume in which the qtree

resides.

Security Style Specifies the security style of the gtree.

Status Specifies the current status of the qtree.

Oplocks Specifies whether the oplocks setting is enabled or

disabled for the qtree.

Export Policy Displays the name of the export policy to which the

qtree is assigned.

Details area

Details tab Displays detailed information about the selected

qtree, such as the mount path of the volume

containing the qtree, details about the export policy,

and the export policy rules.

Quotas

You can use Storage Manager to create, edit, and delete quotas.

Creating quotas

Quotas enable you to restrict or track the disk space and number of files that are used by a user, group, or qtree. You can use the Add Quota wizard in Storage Manager to create a quota and to apply the quota to a specific volume or qtree.

About this task

Using Storage Manager, the minimum value that you can specify for the hard limit and soft limit on the number of files that the quota can own is 1000. If you want to specify a value lower than 1000, you should use the command-line interface (CLI).

- Step 1. Click Storage → Quotas.
- Step 2. From the Quotas on SVM list, select the storage virtual machine (SVM) on which you want to create a quota.
- Step 3. In the User Defined Quotas tab, click **Create** . The Create Quota Wizard is displayed.
- Step 4. Type or select information as prompted by the wizard.
- Step 5. Confirm the details, and then click **Finish** to complete the wizard.

After you finish

You can use the local user name or RID to create user quotas. If you create the user quota or group quota by using the user name or group name, then the /etc/passwd file and the /etc/group file must be updated, respectively.

Deleting quotas

You can use Storage Manager to delete one or more quotas as your users and their storage requirements and limitations change.

- Step 1. Click Storage → Quotas.
- Step 2. From the Quotas on SVM list, select the storage virtual machine (SVM) on which the quotas that you want to delete reside.
- Step 3. Select one or more quotas that you want to delete, and then click **Delete**.
- Step 4. Select the confirmation check box, and then click **Delete**.

Editing quota limits

You can use Storage Manager to edit the disk space threshold, the hard limit and soft limit on the amount of disk space that the quota target can use, and the hard limit and soft limit on the number of files that the quota target can own.

- Step 1. Click Storage → Quotas.
- Step 2. From the Quotas on SVM list, select the storage virtual machine (SVM) on which the quota that you want to edit resides.
- Step 3. Select the quota that you want to edit, and click **Edit Limits**.
- Step 4. In the Edit Limits dialog box, edit the quota settings as required.

 One hundred (100) is the minimum value that you can specify for the hard limit and soft limit on the number of files that the quota can own. If you want to specify a value lower than 100, you should use the command-line interface (CLI).
- Step 5. Click Save and Close.

Step 6. Verify the changes that you made to the selected quota in the User Defined Quotas tab.

Activating or deactivating quotas

You can use Storage Manager to activate or deactivate quotas on one or more selected volumes on your storage system, as your users and their storage requirements and limitations change.

- Step 1. Click Storage → Quotas.
- Step 2. From the Quotas on SVM list, select the storage virtual machine (SVM) on which the quotas that you want to activate or deactivate reside.
- Step 3. In the Quota Status on Volumes tab, select one or more volumes for which you want to activate or deactivate quotas.
- Step 4. Click **Activate** or **Deactivate**, as required.
- Step 5. If you are deactivating a quota, select the confirmation check box, and then click **OK**.
- Step 6. Verify the quota status on the volumes in the Status column.

Resizing quotas

You can use the Resize Quota dialog box in Storage Manager to adjust the active quotas in the specified volume so that they reflect the changes that you have made to a quota.

Before you begin

Quotas must be enabled for the volumes for which you want to resize quotas.

- Step 1. Click Storage → Quotas.
- Step 2. In the Quota Status on Volumes tab of the Quotas window, select one or more volumes for which you want to resize the quotas.
- Step 3. Click Resize.

Viewing quota information

You can use the Quotas window in Storage Manager to view quota details such as the volume and qtrees to which the quota is applied, the type of quota, the user or group to which the quota is applied, and the space and file usage.

- Step 1. Click Storage → Quotas.
- Step 2. From the Quotas on SVM list, select the storage virtual machine (SVM) on which the quota that you want to view information about resides.
- Step 3. Perform the appropriate action:

If	Then
You want to view details of all of the quotas that you created	Click the User Defined Quotas tab.
You want to view details of the quotas that are currently active	Click the Quota Report tab.

- Step 4. Select the quota that you want to view information about from the displayed list of quotas.
- Step 5. Review the quota details.

Types of quotas

Quotas can be classified on the basis of the targets to which they are applied.

The following are the types of quotas based on the targets to which they are applied:

User quota The target is a user.

The user can be represented by a UNIX user name, UNIX UID, a Windows SID, a file or directory whose UID matches the user, Windows user name in pre-Windows 2000 format, and a file or directory with an ACL owned by the user's SID. You can apply it to a

volume or a qtree.

Group quota The target is a group.

The group is represented by a UNIX group name, a GID, or a file or directory whose GID matches the group. ONTAP does not apply group quotas based on a Windows ID. You can apply a quota to a

volume or a qtree.

Qtree quota The target is a qtree, specified by the path name to

the qtree.

You can determine the size of the target qtree.

Default quota Automatically applies a quota limit to a large set of

quota targets without creating separate quotas for

each target.

Default quotas can be applied to all three types of quota target (users, groups, and qtrees). The quota type is determined by the value of the type field.

Quota limits

You can apply a disk space limit or limit the number of files for each quota type. If you do not specify a limit for a quota, none is applied.

Disk space soft limit Disk space limit applied to soft quotas.

Disk space hard limit Disk space limit applied to hard quotas.

Threshold limit Disk space limit applied to threshold quotas.

Files soft limit The maximum number of files on a soft quota.

Files hard limit The maximum number of files on a hard quota.

Quota management

Storage Manager includes several features that help you to create, edit, or delete quotas. You can create a user, group, or tree quota and you can specify quota limits at the disk and file levels. All quotas are established on a per-volume basis.

After creating a quota, you can perform the following tasks:

- Enable and disable quotas
- · Resize quotas

Quotas window

You can use the Quotas window to create, display, and manage information about quotas.

- "Tabs " on page 232
- "Command buttons" on page 232
- "User Defined Quotas list" on page 232
- " Details area" on page 233

Tabs

User Defined Quotas You can use the **User Defined Quotas** tab to view

details of the quotas that you create and to create,

edit, or delete quotas.

Quota Report You can use the Quota Report tab to view the space

and file usage and to edit the space and file limits of

quotas that are active.

Quota Status on Volumes You can use the Quota Status on Volumes tab to

view the status of a quota and to turn quotas on or

off and to resize quotas.

Command buttons

Create Opens the Create Quota wizard, which enables you

to create quotas.

Edit Limits Opens the Edit Limits dialog box, which enables

you to edit settings of the selected quota.

Deletes the selected quota from the quotas list.

Refresh Updates the information in the window.

User Defined Quotas list

The quotas list displays the name and storage information for each quota.

Volume Specifies the volume to which the quota is applied.

Qtree Specifies the qtree associated with the quota. " All

Qtrees " indicates that the quota is associated with

all the qtrees.

Type Specifies the quota type: user, or group, or tree.

User/Group Specifies a user or a group associated with the

quota. "All Users" indicates that the quota is associated with all the users. "All groups" indicates that the quota is associated with all the groups.

Quota Target Specifies the type of target that the quota is

assigned to. The target can be gtree, user, or group.

Space Hard Limit Specifies the disk space limit applied to hard

quotas.

This field is hidden by default.

Space Soft Limit Specifies the disk space limit applied to soft quotas.

This field is hidden by default.

Threshold Specifies the disk space limit applied to threshold

quotas.

This field is hidden by default.

File Hard Limit Specifies the maximum number of files in a hard

quota.

This field is hidden by default.

File Soft Limit Specifies the maximum number of files in a soft

quota.

This field is hidden by default.

Details area

The area below the quotas list displays quota details such as the quota error, space usage and limits, and file usage and limits.

CIFS protocol

You can use Storage Manager to enable and configure CIFS servers to allow CIFS clients to access files on the cluster.

Setting up CIFS

You can use Storage Manager to enable and configure CIFS servers to allow CIFS clients to access the files on the cluster.

Before you begin

- The CIFS license must be installed on your storage system.
- While configuring CIFS in the Active Directory domain, the following requirements must be met:
 - DNS must be enabled and configured correctly.
 - The storage system must be able to communicate with the domain controller by using the fully qualified domain name (FQDN).
 - The time difference (clock skew) between the cluster and the domain controller must not be more than five minutes.
- If CIFS is the only protocol that is configured on the storage virtual machine (SVM), the following requirements must be met:
 - The root volume security style must be NTFS.
 - By default, Storage Manager sets the security style as UNIX.
 - Superuser access must be set to Any for the CIFS protocol.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click SVM Settings.
- Step 3. In the Configuration tab, click **Set up**.
- Step 4. In the General tab of the CIFS Server Setup dialog box, specify the NetBIOS name and the Active Directory domain details.
- Step 5. Click the Options tab, and then perform the following actions:
 - In the SMB settings area, select or clear the SMB signing check box and the SMB encryption check box, as required.
 - · Specify the default UNIX user.
 - In the WINS Servers area, add the required IP address.
- Step 6. Click Set up.

Editing the general properties for CIFS

You can modify the general properties for CIFS such as the default UNIX user and default Windows user by using Storage Manager . You can also enable or disable SMB signing for the CIFS server.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click SVM Settings.
- Step 3. In the Configuration tab, click **Options**.
- Step 4. In the CIFS Options dialog box, modify the following CIFS server properties, as required:
 - UNIX user
 - Windows user
 - IP address
 - Enable or disable SMB signing

Enabling SMB signing prevents the data from being compromised. However, you might encounter performance degradation in the form of increased CPU usage on both the clients and the server, although the network traffic remains the same. You can disable SMB signing on any of your Windows clients that do not require protection against replay attacks.

For information about disabling SMB signing on Windows clients, see the Microsoft Windows documentation.

Enable or disable SMB 3.0 encryption

You should enable SMB Multichannel to establish multiple channels between an SMB 3.0 session and transport connections.

Step 5. Click either Save or Save and Close .

Adding home directory paths

You can use Storage Manager to specify one or more paths that can be used by the storage system to resolve the location of the CIFS home directories of users.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click **SVM Settings**.
- Step 3. In the Home Directories area of the Configuration tab, click Manage.
- Step 4. In the Manage Home Directories dialog box, specify the paths that are to be used by the storage system to search for the CIFS home directories of users.

Step 5. Click Add, and then click Save and Close.

Deleting home directory paths

You can use Storage Manager to delete a home directory path when you do not want the storage system to use the path to resolve the location of the CIFS home directories of users.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click **SVM Settings**.
- Step 3. In the Home Directories area of the Configuration tab, click **Manage**.
- Step 4. In the Manage Home Directories dialog box, select the home directory path that you want to delete, and then click **Delete**.
- Step 5. Click Save and Close.

Resetting CIFS domain controllers

You can use Storage Manager to reset the CIFS connection to domain controllers for the specified domain. Failure to reset the domain controller information can cause a connection failure.

About this task

You have to update the discovery information of the storage system's available domain controller after you add or delete a domain from the list of preferred domain controllers. You can update the storage system's available domain controller discovery information in ONTAP through the command-line interface (CLI).

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click SVM Settings.
- Step 3. In the Domain tab, click Reset.

Updating the CIFS group policy configuration

You have to update the group policy after the policy configuration is changed through the command-line interface (CLI). You can use the CIFS window in Storage Manager to update the group policy.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click **SVM Settings**.
- Step 3. Click the **Domain** tab.
- Step 4. In the Group Policy area, select the group policy configuration that you want to update, and then click **Update**.

Enabling or disabling a CIFS group policy configuration

You can enable or disable the CIFS group policy configuration from the CIFS window in Storage Manager.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click **SVM Settings**.
- Step 3. Click the **Domain** tab.
- Step 4. In the Group Policy area, select the group policy configuration that you want to enable or disable, and then click **Enable** or **Disable**, as required.

Reloading CIFS group policy

You have to reload a CIFS group policy if the status of the policy is changed. You can use the CIFS window in Storage Manager to reload the group policy.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click **SVM Settings**.
- Step 3. Click the **Domain** tab.
- Step 4. In the Group Policy area, select the group policy configuration that you want to reload, and then click **Reload**.

Setting up BranchCache

You can use Storage Manager to configure BranchCache on a CIFS-enabled storage virtual machine (SVM) to enable the caching of content on computers that are local to the requesting clients.

Before you begin

- CIFS must be licensed, and a CIFS server must be configured.
- For BranchCache version 1, SMB 2.1 or later must be enabled.
- For BranchCache version 2, SMB 3.0 must be enabled, and the remote Windows clients must support BranchCache 2.

About this task

- You can configure BranchCache on SVMs.
- You can create an all-shares BranchCache configuration if you want to offer caching services for all of the content that is contained within all of the SMB shares on the CIFS server.
- You can create a per-share BranchCache configuration if you want to offer caching services for the content that is contained within selected SMB shares on the CIFS server.
- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click **SVM Settings**.
- Step 3. In the BranchCache tab, click **Set Up**.
- Step 4. In the BranchCache Setup dialog box, enter the following information:
 - a. Specify the path to the hash store. The path can be to an existing directory where you want the hash data to be stored. The destination path must be read-writable. Read-only paths such as Snapshot directories are not allowed.
 - b. Specify the maximum size (in KB, MB, GB, TB, or PB) for a hash data store. If the hash data exceeds this value, older hashes are deleted to provide space for newer hashes. The default size for a hash store is 1 GB.
 - c. Specify the operating mode for the BranchCache configuration. The default operating mode is set to all shares.
 - d. Specify a server key to prevent clients from impersonating the BranchCache server. You can set the server key to a specific value so that if multiple servers are providing BranchCache data for the same files, clients can use hashes from any server using that same server key. If the server key contains any spaces, you must enclose the server key in quotation marks.
 - e. Select the required BranchCache version.
 By default, all of the versions that are supported by the client are selected.

Step 5. Click Set Up.

Modifying the BranchCache settings

You can use the CIFS window in Storage Manager to modify the BranchCache settings that are configured for a CIFS-enabled storage virtual machine (SVM). You can change the hash store path, the hash store size, the operating mode, and the BranchCache versions that are supported.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click **SVM Settings**.
- Step 3. In the BranchCache tab, click Edit.
- Step 4. In the Modify BranchCache Settings dialog box, modify the required information:
 - Hash store path

If you modify the hash store path, you are provided with an option to retain the cached hash data from the previous hash store.

- Hash store size
- Operating mode
- BranchCache version
- Step 5. Click Modify.

Deleting the BranchCache configuration

You can use Storage Manager to delete the BranchCache configuration if you no longer want to offer caching services on the storage virtual machine (SVM) that is configured for BranchCache.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click **SVM Settings**.
- Step 3. In the BranchCache tab, click **Delete**.
- Step 4. Select the confirmation check box, and then click **Delete** . You can also remove existing hashes from the hash store.

Adding preferred domain controllers

Storage Manager automatically discovers domain controllers through DNS. Optionally, you can add one or more domain controllers to the list of preferred domain controllers for a specific domain.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click **SVM Settings**.
- Step 3. In the Domain tab, click Add in the Preferred Domain Controllers area.
- Step 4. Enter the fully qualified domain name (FQDN) and the IP addresses of the domain controllers that you want to add.
 - You can add multiple domain controllers by entering the IP addresses of the domain controllers, separated by commas.
- Step 5. Click Save.
- Step 6. Verify that the domain controller that you added is displayed in the list of preferred domain controllers.

Editing preferred domain controllers

You can use Storage Manager to modify the IP address of the preferred domain controllers that are configured for a specific domain.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click SVM Settings.
- Step 3. In the Preferred Domain Controllers area of the Domain tab, double-click the domain controller that you want to edit.
- Step 4. Modify the IP addresses of the domain controller, and then click Save.

Deleting preferred domain controllers

You can use Storage Manager to delete a preferred domain controller to which the storage virtual machine (SVM) computer account is associated. You can do this when you no longer want to use a particular domain controller.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click SVM Settings.
- Step 3. In the Domain tab, select the domain that you want to delete from the Preferred Domain Controllers area, and then click **Delete**.
- Step 4. Select the confirmation check box, and then click **Delete**.

Viewing CIFS domain information

You can use Storage Manager to view information about the domain controllers and servers that are connected to the storage system.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click **SVM Settings**.
- Step 3. Click the **Domain** tab.
- Step 4. Review the information about the connected domain controllers and servers.

CIFS window

You can use the CIFS window to configure the CIFS server, to manage domain controllers, to manage symbolic UNIX mappings, and to configure BranchCache.

Configuration tab

The Configuration tab enables you to create and manage the CIFS server.

Server

Specifies the status of the CIFS server, name of the server, authentication mode, name of the active directory domain, and status of SMB multichannel.

Home Directories

Specifies home directory paths and the style for determining how PC user names are mapped to home directory entries.

Command buttons

Setup

Opens the CIFS Setup wizard, which enables you to set up CIFS on your storage virtual machine (SVM).

Options

Displays the CIFS Options dialog box, which enables you to enable or disable SMB 3.0 signing, to enable or disable SMB 3.0 encryption, and to add Windows Internet Name Service (WINS) servers.

SMB signing prevents the network traffic between the CIFS server and the client from being compromised.

Delete

Enables you to delete the CIFS server.

Refresh

Updates the information in the window.

Domain tab

The Domain tab enables you to view and reset your CIFS domain controllers, and to add or delete preferred domain controllers. You can also use this tab to manage CIFS group policy configurations.

Servers Displays information about discovered

authentication servers and your preferred domain

controllers on the CIFS-enabled SVM.

You can also reset the information about the discovered servers, add a preferred domain

controller, delete a domain controller, or refresh the

list of domain controllers.

Group Policy Enables you to view, enable, or disable group policy

configurations on the CIFS server. You can also reload a group policy if the status of the policy is

changed.

Symlinks tab

The Symlinks tab enables you to manage the mappings of UNIX symbolic links for CIFS users.

Path Mappings

Command buttons

Displays the list of symbolic link mappings for CIFS.

Create

Opens the Create New Symlink Path Mappings dialog box, which enables you to create a UNIX symbolic link mapping.

Edit

Opens the Edit Symlink Path Mappings dialog box, which enables you to modify the CIFS share and path.

Delete

Enables you to delete the symbolic link mapping.

Refresh

Updates the information in the window.

BranchCache tab

The BranchCache tab enables you to set up and manage BranchCache settings on CIFS-enabled SVMs.

You can view the status of the BranchCache service, the path to the hash store, the size of the hash store, and the operating mode, server key, and version of BranchCache.

Command buttons

Setup

Opens the BranchCache Setup dialog box, which enables you to configure BranchCache for the CIFS server.

Edit

Opens the Modify BranchCache Settings dialog box, which enables you to modify the properties of the BranchCache configuration.

Delete

Enables you to delete the BranchCache configuration.

Refresh

Updates the information in the window.

NFS protocol

You can use Storage Manager to authenticate NFS clients to access data on the SVM.

Editing NFS settings

You can use Storage Manager to edit the NFS settings such as enabling or disabling NFSv3, NFSv4, and NFSv4.1, enabling or disabling read and write delegations for NFSv4 clients, and enabling NFSv4 ACLs. You can also edit the default Windows user.

About this task

NFSv4 is not supported on an Infinite Volume.

Step 1. Click Storage → SVMs.

Step 2. Select the SVM, and then click **SVM Settings**.

Step 3. In the Protocols pane, click NFS.

Step 4. In the NFS window, click Edit.

Step 5. In the Edit NFS Settings dialog box, make the required changes.

Step 6. Click Save and Close.

NFS window

You can use the NFS window to display and configure your NFS settings.

Server Status Displays the status of the NFS service. The service

is enabled if the NFS protocol is configured on the

storage virtual machine (SVM).

Note: If you have upgraded to ONTAP 8.3 or later from an NFS-enabled storage system running Data ONTAP 8.1.x, the NFS service is enabled in ONTAP 8.3 or later. However, you must enable support for NFSv3 or NFSv4 because NFSv2 is no longer

supported.

Command buttons

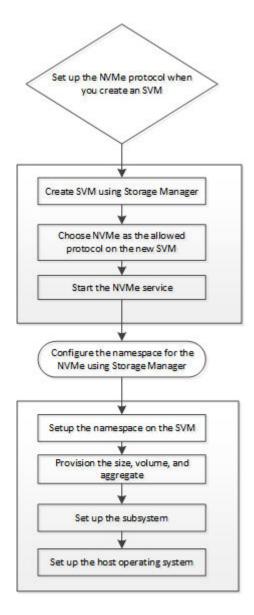
Enable Enables the NFS service.

Disable Disables the NFS service.

Edit Opens the Edit NFS Settings dialog box, which

enables you to edit NFS settings.

Refresh Updates the information in the window.


NVMe protocol

You can use Storage Manager to configure the NVMe protocol. The NVMe is a transport protocol that provides high speed access to flash-based network storage. Systems that use NVMe protocol have a subsystem consisting of specific NVME controllers, namespaces, nonvolatile storage medium, hosts, ports and and interface between the controller and storage medium.

Setting up NVMe

You can set up the NVMe protocol for an SVM using Storage Manager . When the NVMe protocol is enabled on the SVM, you can then provision a namespace or namespaces and assign them to a host and a subsystem.

The following illustration shows the workflow for setting up NVMe:

Creating an NVMe namespace

You can use Storage Manager to create one or more NVMe namespaces and connect each to a host or set of hosts in a storage virtual machine (SVM). The NVMe namespace is a quantity of memory that can be formatted into logical blocks. Each namespace can be mapped to an NVMe subsystem.

Before you begin

The SVM must already be configured with the NVMe protocol. To map a namespace, at least one LIF with the data protocol NVMe must exist in the node that owns the namespace.

- Step 1. Click Storage → NVMe → NVMe namespaces.
- Step 2. Select the SVM that will contain the namespace.
- Step 3. Configure the size of the namespace (between 1MB and 16TB).
- Step 4. Select the existing volume or create a new volume by choosing the aggregate. Click on the + symbol to set up additional namespaces (max 250) within the SVM.
- Step 5. Select the NVMe subsystem that will be associated with this namespace.

You can choose from the following options:

None: No subsystems are mapped.

Use an existing subsystem: The subsystems listed are based on the selected SVM.

Create a new subsystem: You can choose to create a new subsystem and map to all the new namespaces.

- Step 6. Select the host operating system.
- Step 7. Click Submit.

Editing an NVMe namespace

You can use Storage Manager to edit the namespace by changing the subsystem that the namespace is mapped to.

About this task

You can only modify the NVMe subsystem settings in this window, you cannot edit the other namespace details.

- Step 1. Click **NVMe** → **NVMe** namespaces .
- Step 2. In the NVMe namespaces window, select the namespace you want to edit.
- Step 3. Select a subsystem option:

None: Choosing this option unmaps the existing subsystem mapping for this namespace only. This option is preselected if no subsystem mapping is present for the selected namespace.

Use an existing subsystem: This option is preselected if subsystem-to-namespace mapping is present. Choosing a different subsystem maps the new subsystem by unmapping the previously mapped subsystem.

Cloning an NVMe namespace

You can use Storage Manager to quickly create another namespace of the same configuration by choosing to clone a namespace. You can map the newly cloned namespace to another host NQN.

Before you begin

You must have a FlexClone license to clone a namespace.

About this task

You can clone a namespace with the selected host mapping and associate it with another subsystem.

- Step 1. Click **NVMe** → **NVMe** namespaces.
- Step 2. In the NVMe namespaces window, select the namespace you want to clone.
- Step 3. You can rename the cloned namespace if you need a specific name but it is not required. The dialog provides a default name of the namespace to-be-cloned.
- Step 4. Modify the subsystem mapping for the cloned namespace.
- Step 5. Click **OK**.

The online, mapped namespace is cloned inside the same SVM with a different name. Host mapping will not be cloned.

Starting and stopping the NVMe service

The NVMe service enables you to manage NVMe adapters for use with namespaces. You can use Storage Manager to start the NVMe service to bring the adapters online. You can stop the NVMe service to take the NVMe adapters offline and to disable access to the namespaces.

Before you begin

NVMe capable adapters must be present before you start the NVMe service.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click SVM settings.
- Step 3. In the Protocols menu, click NVMe.
- Step 4. Click **Start** or **Stop** service as required.

What NVMe is

The nonvolatile memory express (NVMe) protocol is a transport protocol used for accessing nonvolatile storage media. This interface is used when the storage devices reside in the same physical enclosure as the host operating system or application and can be directly connected by PCle, such as in servers or laptop computers.

NVMe is the standardized interface for applications to communicate with nonvolatile memory data storage using a PCI express (PCIe) connection.

NVMe over Fabrics (NVMeoF) is a specification-defined extension to NVMe that enables NVMe-based communication over connections other than PCle. This interface allows for external storage enclosures to be connected to a server, either directly or through a switch, while still using NVMe as the fundamental communication mechanism.

NVMe is designed to provide efficient access to storage devices built with non-volatile memory, from flash technology to higher performing, persistent memory technologies. As such, it does not have the same limitations as storage protocols designed for hard disk drives. Flash and solid state devices (SSDs) are a type of non-volatile memory (NVM). NVM is a type of memory that keeps its content during a power outage. NVMe is a way that you can access that memory.

The benefits of NVMe include increased speeds, productivity, throughput, and capacity for data transfer. Specific characteristics include the following:

- NVMe is designed to have up to 64 thousand queues.
 - Each queue in turn can have up to 64 thousand concurrent commands.
- NVMe is supported by multiple hardware and software vendors
- NMVe is more productive with Flash technologies enabling faster response times
- NVMe allows for multiple data requests for each "request" sent to the SSD.

NVMe takes less time to decode a "request" and does not require thread locking in a multithreaded program.

 NVMe supports functionality that prevents bottlenecking at the CPU level and enables massive scalability as systems expand

NVMe namespaces

An NVMe namespace is a quantity of non-volatile memory (NVM) that can be formatted into logical blocks. Namespaces are used when a storage virtual machine is configured with the NVMe protocol.

One or more namespaces are provisioned and connected to an NVMe host. Each namespace can support various block sizes.

The NVMe protocol provides access to namespaces through multiple controllers. Using NVMe drivers, which are supported on most operating systems, solid state drive (SSD) namespaces appear as standard-block devices on which file systems and applications can be deployed without any modification.

A namespace ID (NSID) is an identifier used by a controller to provide access to a namespace. When setting the NSID for a host or host group, you also configure the accessibility to a volume by a host. A logical block can only be mapped to a single host group at a time, and a given host group does not have any duplicate NSIDs.

NVMe subsystems

When you create an NVMe namespace, you can associate this with a nonvolatile memory (NVM) subsystem. The subsystem includes one or more NVMe controllers, namespaces, NVM subsystem ports, an NVM storage medium and an interface between the controller and the NVM storage medium.

You provision a subsystem by providing the following details:

• The subsystem name

The subsystem name is case sensitive. It must contain 1-64 characters and special characters are allowed.

Host OS

The host OS type that the subsystem is being created on.

Host NQN

The host NVMe qualification name attached to the controller. This column can be a comma separated value as there can be one to many hosts attached to a subsystem.

NVMe namespaces window

You can use the NVMe namepaces window to set up and manage your namespaces and associated subsytems for the NVMe protocol. You can search for an existing namespace using the namespace path.

Command Buttons

Create	Opens the NVMe namespace create dialog box, which allows you to set up a new namespace and map it to an NVMe subsystem.
Edit	Enables you to edit the namespace mapping.
Delete	Deletes the selected namespace.
More Actions	Allows you to create a clone of the selected namespace, which can be associated with an existing subsystem, or you can choose not to map it to a subsystem.
Refresh	Updates the information in the window.

NVMe List

Status Displays if the namespace is online or offline.

Namespace Path

The path to the new namespace in the /vol/

volume'/file format. The namespace path is a clickable link. Clicking the link takes you to the

namespace details page.

NVMe Subsystem The name of the subsystem attached to a

namespace. If no subsystems are attached, the value of this column is shown as None . You can see the list of unmapped namespaces by filtering this column for NVMe subsystem contains None .

SVMs The SVM name on which the namespace is created.

The SVM name is a clickable link. Clicking the link takes you to the existing SVM dashboard page.

Namespace ID A unique identifier used by the controller to provide

access to a namespace. This is not a user input; it is generated by the system when the new namespace

is created.

Total Space Displays the total size of the namespace.

Used Space Displays the amount of used space in the

namespace.

%Used Displays the amount of space (in percentage) that is

used in the namespace. The value for this field is

calculated using total and used space.

Details Area

You can select a namespace to view information about the selected namespace. From this area, you can also edit, delete or clone the namespace.

Overview tab

Displays general information about the selected namespace, and displays a pictorial representation of the space allocation of the namespace and the performance of the namespace.

In the Overview tab, the SVM and volume names are clickable links. Clicking the link takes you to the SVM and volume pages, respectively. The number of hosts can be one or more; by default two host names are shown. If more than two host names are shown, you can click a link to access the additional hosts.

The Overview tab also displays a space chart that shows the total and used space details for the namespace and a performance chart that shows details such as latency, IOPS, and throughput.

Status: The status of the namespace; the value can be

online or offline.

246

Host NQN The host NVMe Qualified Names (NQNs) uniquely

describes the host for the purposes of identification and authentication. This field can accept comma separated NVMe qualification name (NQN) values. The host NQN starts with nqn and rest of the validation is the same as the initiator qualification

name (IQN).

Host OS The host operating system for the namespace:

Hyper-V, Linux, VMware, Windows or Xen.

Volume Displays the volume name on which the namespace

is hosted.

Read-Only Displays whether the namespace is read-only or

not.

Node The node that owns the namespace.

Block Size The size of the storage block.

Restore Inaccessible If unmapping a subsystem fails and partial data

remains, unmapped namespaces cannot be

restored.

iSCSI protocol

You can use Storage Manager to configure the iSCSI protocol that enables you to transfer block data to hosts using SCSI protocol over TCP/IP.

Creating iSCSI aliases

An iSCSI alias is a user-friendly identifier that you assign to an iSCSI target device (in this case, the storage system) to make it easier to identify the target device in user interfaces. You can use Storage Manager to create an iSCSI alias.

About this task

An iSCSI alias is a string of 1 to 128 printable characters. An iSCSI alias must not include spaces.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click **SVM Settings**.
- Step 3. In the Protocols pane, click iSCSI.
- Step 4. In the **Service** tab of the iSCSI window, click **Edit**.
- Step 5. In the Edit iSCSI Service Configuration dialog box, enter an iSCSI alias in the **Target Alias** field, and then click **OK**.

Enabling or disabling the iSCSI service on storage system interfaces

You can use Storage Manager to control which network interfaces are used for iSCSI communication by enabling or disabling the interfaces. When the iSCSI service is enabled, iSCSI connections and requests are accepted over those network interfaces that are enabled for iSCSI, but not over disabled interfaces.

Before you begin

You must have terminated any outstanding iSCSI connections and sessions that are currently using the interface. By default, the iSCSI service is enabled on all of the Ethernet interfaces after you enable the iSCSI license.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click SVM Settings.
- Step 3. In the Protocols pane, click **iSCSI**.
- Step 4. In the iSCSI Interfaces area, select the interface on which you want to enable or disable the iSCSI service.
- Step 5. Click **Enable** or **Disable**, as required.

Adding the security method for iSCSI initiators

You can use Storage Manager to add an initiator and to specify the security method that is used to authenticate the initiator.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click SVM Settings.
- Step 3. In the Protocols pane, click **iSCSI**.
- Step 4. In the iSCSI window, click the Initiator Security tab.
- Step 5. Click Add in the Initiator Security area.
- Step 6. Specify the initiator name and the security method for authenticating the initiator.

 For CHAP authentication, you must provide the user name and password, and then confirm your password for inbound settings. For outbound settings, this login information is optional.
- Step 7. Click OK.

Editing default security settings

You can use the Edit Default Security dialog box in Storage Manager to edit the default security settings for the iSCSI initiators that are connected to the storage system.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click SVM Settings.
- Step 3. In the Protocols pane, click **iSCSI**.
- Step 4. In the **Default Security** area of the **Initiator Security** tab, click **Edit**.
- Step 5. In the Edit Default Security dialog box, change the security type.

 For CHAP authentication, you must provide the user name and password, and then confirm your password for inbound settings. For outbound settings, this login information is optional.
- Step 6. Click OK.

Editing initiator security

The security style that is configured for an initiator specifies how authentication is done for that initiator during the iSCSI connection login phase. You can use Storage Manager to change the security for selected iSCSI initiators by changing the authentication method.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click **SVM Settings**.
- Step 3. In the Protocols pane, click **iSCSI**.

- Step 4. In the Initiator Security tab, select one or more initiators from the initiator list, and then click **Edit** in the Initiator Security area.
- Step 5. Change the security type.

 For CHAP authentication, you must provide the user name and password, and then confirm your password for inbound settings. For outbound settings, this login information is optional.
- Step 6. Click OK.
- Step 7. Verify the changes that you made in the Initiator Security tab.

Changing the default iSCSI initiator authentication method

You can use Storage Manager to change the default iSCSI authentication method, which is the authentication method that is used for any initiator that is not configured with a specific authentication method.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click SVM Settings.
- Step 3. In the Protocols pane, click **iSCSI**.
- Step 4. In the Initiator Security tab, click **Edit** in the Default Security area.
- Step 5. Change the security type.

 For CHAP authentication, you must provide the user name and password, and then confirm your password for inbound settings. For outbound settings, this login information is optional.
- Step 6. Click OK.

Setting the default security for iSCSI initiators

You can use Storage Manager to remove the authentication settings for an initiator and to use the default security method to authenticate the initiator.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click SVM Settings.
- Step 3. In the Protocols pane, click **iSCSI**.
- Step 4. In the Initiator Security tab, select the initiator for which you want to change the security setting.
- Step 5. Click **Set Default** in the Initiator Security area, and then click **Set Default** in the confirmation dialog box.

Starting or stopping the iSCSI service

You can use Storage Manager to start or stop the iSCSI service on your storage system.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click **SVM Settings**.
- Step 3. In the Protocols pane, click iSCSI.
- Step 4. Click **Start** or **Stop**, as required.

Viewing initiator security information

You can use Storage Manager to view the default authentication information and all the initiator-specific authentication information.

Step 1. Click Storage → SVMs.

- Step 2. Select the SVM, and then click SVM Settings.
- Step 3. In the Protocols pane, click iSCSI.
- Step 4. In the Initiator Security tab of the iSCSI window, review the details.

iSCSI window

You can use the iSCSI window to start or stop the iSCSI service, change a storage system iSCSI node name, and create or change the iSCSI alias of a storage system. You can also add or change the initiator security setting for an iSCSI initiator that is connected to your storage system.

Tabs

Service You can use the **Service** tab to start or stop the

iSCSI service, change a storage system iSCSI node name, and create or change the iSCSI alias of a

storage system.

Initiator Security You can use the **Initiator Security** tab to add or

change the initiator security setting for an iSCSI initiator that is connected to your storage system.

Command buttons

Edit Opens Edit iSCSI Service Configurations dialog

box, which enables you to change iSCSI node name

and iSCSI alias of the storage system.

Start Starts the iSCSI service.
Stop Stops the iSCSI service.

Refresh Updates the information in the window.

Details area

The details area displays information about the status of the iSCSI service, iSCSI target node name, and iSCSI target alias. You can use this area to enable or disable the iSCSI service on a network interface.

FC/FCoE protocol

You can use Storage Manager to configure FC/FCoE protocols.

Starting or stopping the FC or FCoE service

The FC service enables you to manage FC target adapters for use with LUNs. You can use Storage Manager to start the FC service to bring the adapters online and to enable access to the LUNs on the storage system. You can stop the FC service to take the FC adapters offline and to disable access to the LUNs.

Before you begin

- The FC license must be installed.
- An FC adapter must be present in the target storage system.
- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click SVM Settings.
- Step 3. In the Protocols pane, click **FC/FCoE**.

Step 4. Click **Start** or **Stop**, as required.

Changing an FC or FCoE node name

If you replace a storage system chassis and reuse it in the same Fibre Channel SAN, the node name of the replaced storage system might be duplicated in certain cases. You can change the node name of the storage system by using Storage Manager .

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click **SVM Settings**.
- Step 3. In the Protocols pane, click **FC/FCoE**.
- Step 4. Click Edit.
- Step 5. Type the new name, and then click **OK**.

The FCoE protocol

Fibre Channel over Ethernet (FCoE) is a new model for connecting hosts to storage systems. Like the traditional FC protocol, FCoE maintains existing FC management and controls, but it uses a 10-gigabit Ethernet network as the hardware transport.

Setting up an FCoE connection requires one or more supported converged network adapters (CNAs) in the host, connected to a supported data center bridging (DCB) Ethernet switch. The CNA is a consolidation point and effectively serves as both an HBA and an Ethernet adapter.

In general, you can configure and use FCoE connections the same way you use traditional FC connections.

FC/FCoE window

You can use the FC/FCoE window to start or stop the FC service.

Command buttons

Edit Opens the Edit Node Name dialog box, which

enables you to change the FC or FCoE node name.

Start Starts the FC/FCoE service.
Stop Stops the FC/FCoE service.

Refresh Updates the information in the window.

FC/FCoE details

The details area displays information about the status of FC/FCoE service, the node name, and the FC/FCoE adapters.

Export policies

You can use Storage Manager to create, edit, and manage export policies.

Creating an export policy

You can use Storage Manager to create an export policy so that clients can access specific volumes.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click **SVM Settings**.

- Step 3. In the Policies pane, click **Export Policies**.
- Step 4. Click Create.
- Step 5. In the Create Export Policy dialog box, specify a name for the export policy.
- Step 6. If you want to create an export policy by copying the rules from an existing export policy, select the **Copy Rules from** check box, and then select the storage virtual machine (SVM) and the export policy.
 - You should not select the destination SVM for disaster recovery from the drop-down menu to create an export policy.
- Step 7. In the Export Rules area, click **Add** to add rules to the export policy.
- Step 8. Click Create.
- Step 9. Verify that the export policy that you created is displayed in the Export Policies window.

Renaming export policies

You can use Storage Manager to rename an existing export policy.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click **SVM Settings**.
- Step 3. In the Policies pane, click **Export Policies**.
- Step 4. Select the export policy that you want to rename, and then click **Rename Policy**.
- Step 5. In the Rename Policy dialog box, specify a new policy name, and then click Modify.
- Step 6. Verify the changes that you made in the Export Policies window.

Deleting export policies

You can use Storage Manager to delete export policies that are no longer required.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click **SVM Settings**.
- Step 3. In the Policies pane, click **Export Policies**.
- Step 4. Select the export policy that you want to delete, and then click **Delete Policy**.
- Step 5. Select the confirmation check box, and then click **Delete**.

Adding rules to an export policy

You can use Storage Manager to add rules to an export policy, which enables you to define client access to data.

Before you begin

You must have created the export policy to which you want to add the export rules.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click SVM Settings.
- Step 3. In the Policies pane, click **Export Policies**.
- Step 4. Select the export policy to which you want to add rules, and from the Export Rules tab, click Add.
- Step 5. In the Create Export Rule dialog box, perform the following steps:
 - a. Specify the client that requires access to the data.

You can specify multiple clients as comma-separated values.

You can specify the client in any of the following formats:

- As a host name; for instance, host1
- As an IPv4 address; for instance, 10.1.12.24
- As an IPv4 address with a network mask; for instance, 10.1.16.0/255.255.255.0
- As an IPv6 address; for instance, FE80::0202:B3FF:FE1E:8329
- As an IPv6 address with a network mask; for instance, 2001:db8::/32
- As a netgroup, with the netgroup name preceded by an at symbol (@); for instance, @netgroup
- As a domain name preceded by a period (.); for instance, .example.com

Note: You must not enter an IP address range, such as 10.1.12.10 through 10.1.12.70. Entries in this format are interpreted as a text string and are treated as a host name.

You can enter the IPv4 address 0.0.0.0/0 to provide access to all of the hosts.

- b. If you want to modify the rule index number, select the appropriate rule index number.
- Select one or more access protocols.
 If you do not select any access protocol, the default value "Any" is assigned to the export rule.
- d. Select one or more security types and access rules.
- Step 6. Click **OK**.
- Step 7. Verify that the export rule that you added is displayed in the Export Rules tab for the selected export policy.

Modifying export policy rules

You can use Storage Manager to modify the specified client, access protocols, and access permissions of an export policy rule.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click SVM Settings.
- Step 3. In the Policies pane, click Export Policies.
- Step 4. In the Export Policies window, select the export policy for which you want to edit the export rule, and in the Export Rules tab, select the rule that you want to edit, and then click **Edit**.
- Step 5. Modify the following parameters as required:
 - Client specification
 - · Access protocols
 - Access details
- Step 6. Click OK.
- Step 7. Verify that the updated changes for the export rule are displayed in the Export Rules tab.

Deleting export policy rules

You can use Storage Manager to delete export policy rules that are no longer required.

Step 1. Click Storage → SVMs.

- Step 2. Select the SVM, and then click **SVM Settings**.
- Step 3. In the Policies pane, click **Export Policies**.
- Step 4. Select the export policy for which you want to delete the export rule.
- Step 5. In the Export Rules tab, select the export rule that you want to delete, and then click **Delete**.
- Step 6. In the confirmation box, click **Delete**.

How export policies control client access to volumes or gtrees

Export policies contain one or more *export rules* that process each client access request. The result of the process determines whether the client is denied or granted access and what level of access. An export policy with export rules must exist on the storage virtual machine (SVM) for clients to access data.

You associate exactly one export policy with each volume or qtree to configure client access to the volume or qtree. The SVM can contain multiple export policies. This enables you to do the following for SVMs with multiple volumes or qtrees:

- Assign different export policies to each volume or qtree of the SVM for individual client access control to each volume or qtree in the SVM.
- Assign the same export policy to multiple volumes or qtrees of the SVM for identical client access control
 without having to create a new export policy for each volume or qtree.

If a client makes an access request that is not permitted by the applicable export policy, the request fails with a permission-denied message. If a client does not match any rule in the export policy, then access is denied. If an export policy is empty, then all accesses are implicitly denied.

You can modify an export policy dynamically on a system running ONTAP.

Export Policies window

You can use the Export Policies window to create, view, and manage information about export policies and its related export rules.

Export Policies

The Export Policies window enables you to view and manage the export policies created for the storage virtual machine (SVM).

Command buttons

Create

Opens the Create Export Policy dialog box, which enables you to create an export policy and add export rules. You can also copy export rules from an existing SVM.

Rename

Opens the Rename Policy dialog box, which enables you to rename the selected export policy.

Delete

Opens the Delete Export Policy dialog box, which enables you to delete the selected export policy.

Refresh

Updates the information in the window.

Export Rules tab

The Export Rules tab enables you to view information about the export rules created for a particular export policy. You can also add, edit, and delete rules.

Command buttons

Add

Opens the Create Export Rule dialog box, which enables you to add an export rule to the selected export policy.

Edit

Opens the Modify Export Rule dialog box, which enables you to modify the attributes of the selected export rule.

Delete

Opens the Delete Export Rule dialog box, which enables you to delete the selected export rule.

Move Up

Moves up the rule index of the selected export rule.

Move Down

Moves down the rule index of the selected export rule.

Refresh

Updates the information in the window.

Rule Index

Specifies the priority based on which the export rules are processed. You can use the Move Up and Move Down buttons to choose the priority.

Client

Specifies the client to which the rule applies.

Access Protocols

Displays the access protocol that is specified for the export rule.

If you have not specified any access protocol, the default value "Any" is considered.

Read-Only Rule

Specifies one or more security types for readonly access.

Read/Write Rule

Specifies one or more security types for read/ write access.

Superuser Access

Specifies the security type or types for superuser access.

Export rules list

Assigned Objects tab

The Assigned Objects tab enables you to view the volumes and qtrees that are assigned to the selected export policy. You can also view whether the volume is encrypted or not.

Efficiency policies

You can use Storage Manager to create, edit, and delete efficiency policies.

Adding efficiency policies

You can use Storage Manager to add efficiency policies for running the deduplication operation on a volume on a specified schedule or when the change in volume data reaches a specified threshold value.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click **SVM Settings**.
- Step 3. In the Policies pane, click Efficiency Policies.
- Step 4. Click **Add**, and then specify the policy name.
- Step 5. Specify how the storage efficiency policy should be run:

Select **Schedule**, and specify the schedule name and the schedule details.

You can specify the maximum run-time duration of the efficiency policy, if required.

Select **ChangeLog Threshold**, and specify the threshold value (in percent) for the change in volume data.

- Step 6. Optional: Select the **Set QoS policy to background** check box to reduce performance impact on client operations.
- Step 7. Click Add.

Editing efficiency policies

You can use Storage Manager to modify the attributes of an efficiency policy such as the policy name, schedule name, and maximum runtime.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click SVM Settings.
- Step 3. In the Policies pane, click Efficiency Policies.
- Step 4. In the Efficiency Policies window, select the policy that you want to edit, and then click Edit.
- Step 5. In the Edit Efficiency Policy dialog box, make the required changes.
- Step 6. Click Save.

Deleting efficiency policies

You can use Storage Manager to delete an efficiency policy that is no longer required.

Before you begin

The efficiency policy must be disabled.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click **SVM Settings**.

- Step 3. In the Policies pane, click **Efficiency Policies**.
- Step 4. Select the efficiency policy that you want to delete, and then click **Delete**.
- Step 5. Select the confirmation check box, and then click **Delete**.

Enabling or disabling efficiency policies

You can use Storage Manager to enable or disable an efficiency policy.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click SVM Settings.
- Step 3. In the Policies pane, click **Efficiency Policies**.
- Step 4. Select one or more efficiency policies that you want to enable or disable.
- Step 5. Click **Status** → **Enable** or **Status** → **Disable**, as required.
- Step 6. If you are disabling an efficiency policy, select the confirmation check box, and then click OK.

What an efficiency policy is

An efficiency policy is a job schedule for a deduplication operation on a FlexVol volume or Infinite Volume.

You can run deduplication on a FlexVol volume or Infinite Volume either by scheduling the operations to start at a specific time or by specifying a threshold percentage after which the operations are triggered. You can schedule a deduplication operation by creating job schedules that are enclosed within the efficiency policies or you can specify a threshold percentage, which waits for the new data to exceed the specified percentage and then triggers the deduplication. The volume efficiency policies support only job schedules that are of type cron.

Understanding predefined efficiency policies

You can configure a volume with efficiency policies to achieve additional space savings. You can configure a volume to run inline compression without a scheduled or manually started background efficiency operation configured on the volume.

When you create an SVM, the following efficiency policies are created automatically and cannot be deleted:

Default

You can configure a volume with the efficiency policy to run the scheduled deduplication operations on the volume.

Inline-only

You can configure a volume with the inline-only efficiency policy and enable inline compression, to run inline compression on the volume without any scheduled or manually started background efficiency operations.

For more information about the inline-only and default efficiency policies, see the man pages.

Efficiency Policies window

You can use the Efficiency Policies window to create, display, and manage information about efficiency policies.

Command buttons

Add Opens the Add Efficiency Policy dialog box, which

enables you to run a deduplication operation on a volume for a specified duration (schedule-based) or

when the change in volume data reaches a specified threshold value (threshold-based).

Edit Opens the Edit Efficiency Policy dialog box, which

enables you to modify the schedule, threshold value, QoS type, and maximum run time for a

deduplication operation.

Delete Opens the Delete Efficiency Policy dialog box,

which enables you to delete the selected efficiency

policy.

Status Open a drop-down menu, which provides options

to enable or disable the selected efficiency policy.

Refresh Updates the information in the window.

Efficiency policies list

Policy Specifies the name of an efficiency policy.

Specifies the status of an efficiency policy. The

status can be one of the following:

Enabled

Specifies that the efficiency policy can be assigned to a deduplication operation.

Disabled

Specifies that the efficiency policy is disabled. You can enable the policy by using the status drop-down menu and assign it later to a

deduplication operation.

Specifies whether the storage efficiency policy is run based on a schedule or based on a threshold

value (change log threshold).

Run By

Status

QoS Policy

Specifies the QoS type for the storage efficiency policy. The QoS type can be one of the following:

Background

Specifies that the QoS policy is running in the background, which reduces potential performance impact on the client operations.

Best-effort

Specifies that the QoS policy is running on a best-effort basis, which enables you to maximize the utilization of system resources.

Specifies the maximum run-time duration of an efficiency policy. If this value is not specified, the efficiency policy is run till the operation is complete.

Maximum Runtime

Details area

The area below the efficiency policy list displays additional information about the selected efficiency policy, including the schedule name and the schedule details for a schedule-based policy, and the threshold value for a threshold-based policy.

Protection policies

You can use Storage Manager to create, edit, and delete protection policies.

Creating protection policies

You can use Storage Manager to create asynchronous mirror policies, vault policies, or mirror and vault policies, and to apply these policies to a data protection relationship.

- Step 1. Click Storage → SVMs.
- Step 2. Select the storage virtual machine (SVM) for which you want to create a protection policy, and then click **SVM Settings**.
- Step 3. In the Policies pane, click **Protection Policies**.
- Step 4. Click Create.
- Step 5. In the Create Policy dialog box, select the policy type that you want to create.
- Step 6. Specify the policy name and transfer priority.

 Low indicates that the transfer has the least priority, and the transfer is usually scheduled after normal priority transfers. By default, the priority is set to Normal.
- Step 7. Optional: For a policy of type asynchronous mirror, select the **Transfer All Source Snapshot Copies** check box to include the "all_source_snapshots" rule to the mirror policy, which backs up all of the Snapshot copies from the source volume.
- Step 8. Optional: Select the **Enable Network Compression** check box to compress the data that is being transferred during a data transfer.
- Step 9. Optional: Click **Add Comments** to add additional comments for the policy.
- Step 10. For a policy of type vault or mirror vault, specify a SnapMirror label and a destination retention count.
- Step 11. Click Create.

Deleting protection policies

You can use Storage Manager to delete a protection policy if you no longer want to use the policy.

About this task

The cluster-level mirror policies or vault policies are not displayed.

- Step 1. Click Storage → SVMs.
- Step 2. Select the storage virtual machine (SVM), and then click **SVM Settings**.
- Step 3. In the Protection Policies window, select the policy that you want to delete, and then click **Delete**.
- Step 4. In the Delete Policy dialog box, click **Delete**.

Editing protection policies

You can use Storage Manager to modify a protection policy and to apply the policy to a data protection relationship.

About this task

The protection policies are not displayed at the cluster level.

- Step 1. Click Storage → SVMs.
- Step 2. Select the storage virtual machine (SVM), and then click **SVM Settings**.
- Step 3. In the Policies pane, click **Protection Policies**.
- Step 4. Select the protection policy that you want to edit, and then click **Edit**.
- Step 5. Modify the transfer priority, and then enable or disable network compression.
- Step 6. For an asynchronous mirror policy, back up all of the source Snapshot copies.
- Step 7. For a vault policy or mirror vault policy, modify the SnapMirror label and retention count. You cannot remove the sm_created label for a mirror vault policy.
- Step 8. Click Save.

Protection Policies window

You can use the Protection Policies window to create, manage, and display information about mirror, vault, and mirror vault policies.

- "Command buttons" on page 261
- "Protection policies list" on page 262
- " Details area" on page 262

Command buttons

Create	Opens the Create Policy dialog box, which enables you to create a mirror, vault, or mirror vault policy.
Edit	Opens the Edit Policy dialog box, which enables you to edit a policy.
Delete	Opens the Delete Policy dialog box, which enables you to delete a policy.
Refresh	Updates the information in the window.

Protection policies list

Name Displays the name of the protection policy.

Type Displays the policy type, which can be Vault, Mirror

Vault, or Asynchronous Mirror.

Comment Displays the description specified for the policy.

Transfer Priority Displays the data transfer priority, such as Normal

or Low.

Details area

Policy Details tab Displays details of the protection policy, such as the

user who created the policy, number of rules,

retention count, and status of network

compression.

Policy Rules tab Displays details of the rules that are applied to the

policy. The Policy Rules tab is displayed only if the

selected policy contains rules.

QoS policy groups

You can use Storage Manager to create, edit, and delete QoS policy groups.

Creating QoS policy groups

You can use Storage Manager to create storage Quality of Service (QoS) policy groups to limit the throughput of workloads and to monitor workload performance.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click SVM Settings.
- Step 3. In the Policies pane, click QoS Policy Groups.
- Step 4. In the QoS Policy Groups window, click **Create**.
- Step 5. In the Create Policy Group dialog box, specify a group name for the policy.
- Step 6. Specify the minimum throughput limit.
 - You can set the minimum throughput limit only on an AFA platform.
 - You cannot set the minimum throughput limit for volumes on a FabricPool-enabled aggregate.
 - If you do not specify the minimum throughput value or if the minimum throughput value is set to 0, the system automatically displays "None" as the value.

This value is case-sensitive.

- Step 7. Specify the maximum throughput limit.
 - The minimum throughput limit and the maximum throughput limit must be of the same unit type.
 - If you do not specify the minimum throughput limit, you can set the maximum throughput limit in IOPS and B/s, KB/s, MB/s, and so on.
 - If you do not specify the maximum throughput limit, the system automatically displays " Unlimited" as the value.

This value is case-sensitive. The unit that you specify does not affect the maximum throughput.

Step 8. Click OK.

Deleting QoS policy groups

You can use Storage Manager to delete a Storage Quality of Service (QoS) policy group that is no longer required.

Before you begin

You must have unassigned all of the storage objects that are assigned to the policy group.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click SVM Settings.
- Step 3. In the Policies pane, click **QoS Policy Groups**.
- Step 4. In the QoS Policy Groups window, select the policy group that you want to delete, and then click **Delete**.
- Step 5. In the confirmation dialog box, click **Delete**.

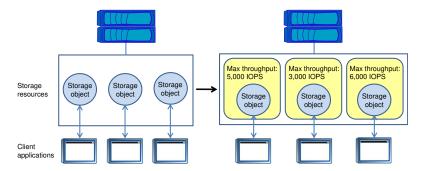
Editing QoS policy groups

You can use the Edit Policy Group dialog box in Storage Manager to modify the name and maximum throughput of an existing storage Quality of Service (QoS) policy group.

About this task

- You can set the minimum throughput limit only on an AFA platform.
- You cannot set the minimum throughput limit for volumes on a FabricPool-enabled aggregate.
- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click **SVM Settings**.
- Step 3. In the Policies pane, click **QoS Policy Groups**.
- Step 4. Select the QoS policy group that you want to edit, and then click **Edit**.
 - The minimum throughput limit and the maximum throughput limit must be of the same unit type.
 - If you do not specify the minimum throughput limit, you can set the maximum throughput limit in IOPS and B/s, KB/s, MB/s, and so on.
 - If you do not specify the maximum throughput limit, the value is set to unlimited, and the unit that you specify does not affect the maximum throughput.
- Step 5. In the Edit Policy Group dialog box, edit the QoS policy group details, and then click **Save**.

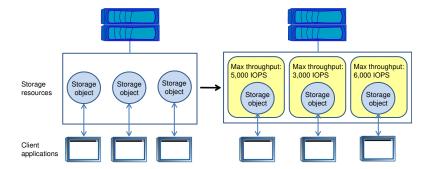
Managing workload performance by using Storage QoS


Storage Quality of Service (QoS) can help you manage risks around meeting your performance objectives. You can use Storage QoS to limit the throughput to workloads and to monitor workload performance. You can reactively limit workloads to address performance problems, and you can limit workloads to prevent performance problems.

A workload represents the input/output (I/O) operations to one of the following kinds of storage objects:

- FlexVol volumes
- LUNs
- FlexGroup volumes

You can assign a storage object to a policy group to control and monitor a workload. You can monitor workloads without controlling them.


The following illustration shows a sample environment before and after using Storage QoS. On the left, the workloads compete for cluster resources to transmit I/O. These workloads get "best effort" performance, which means that you have less performance predictability (for example, a workload might get such good performance that it negatively impacts other workloads). On the right, the same workloads are assigned to policy groups. The policy groups enforce a maximum throughput limit.

How Storage QoS works

Storage QoS controls workloads that are assigned to policy groups by throttling and prioritizing client operations (SAN and NAS data requests) and system operations.

The following illustration shows a sample environment before and after using Storage QoS. On the left, workloads compete for cluster resources to transmit I/O. These workloads get "best effort" performance, which means that you have less performance predictability (for example, a workload might get such good performance that it negatively impacts other workloads). On the right, the same workloads are assigned to policy groups that enforce maximum throughput limits.

The -max-throughput parameter specifies the maximum throughput limit for the policy group that the policy group must not exceed. The value of this parameter is specified in terms of IOPS or MB/s, or a combination of comma-separated IOPS and MB/s values, and the range is zero to infinity.

The units are base 10. There should be no space between the number and the unit. The default value for the -max-throughput parameter is infinity, which is specified by the special value INF.

Note: There is no default unit for the -max-throughput parameter. For all values except zero and infinity, you must specify the unit.

The keyword "none" is available for a situation that requires the removal of a value. The keyword "INF" is available for a situation that requires the maximum available value to be specified. Examples of valid

throughput specifications are: " " 100B/s " ", " 10KB/s ", " 19b/s ", " 500MB/s ", " 11b/s ", " 100iops ", " 100

How the maximum throughput limit works

You can specify one service-level objective for a Storage QoS policy group: a maximum throughput limit. A maximum throughput limit, which you define in terms of IOPS, MBps, or both, specifies the throughput that the workloads in the policy group cannot collectively exceed.

When you specify a maximum throughput for a policy group, Storage QoS controls client operations to ensure that the combined throughput for all workloads in the policy group does not exceed the specified maximum throughput.

For example, assume that you create the policy group "untested_apps" and specify a maximum throughput of 300 MBps. You assign three volumes to the policy group. The combined throughput to those three volumes cannot exceed 300 MBps.

Note: The combined throughput to the workloads in a policy group might exceed the specified limit by up to 10 percent. A deviation might occur if you have a workload that experiences rapid changes in throughput (sometimes called a *bursty workload*).

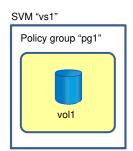
Note the following about specifying a maximum throughput:

- You must not set the limit too low because you might underutilize the cluster.
- You must consider the minimum amount of throughput that you want to reserve for workloads that do not have limits.

For example, you can ensure that your critical workloads get the throughput that they need by limiting noncritical workloads.

· You might want to provide room for growth.

For example, if you see an average utilization of 500 IOPS, you might specify a limit of 1,000 IOPS.

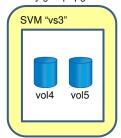

Rules for assigning storage objects to policy groups

You should be aware of rules that dictate how you can assign storage objects to Storage QoS policy groups.

Storage objects and policy groups must belong to the same SVM

A storage object must be contained by the SVM to which the policy group belongs. You specify the SVM to which the policy group belongs when you create the policy group. Multiple policy groups can belong to the same SVM.

In the following illustration, the policy group pg1 belongs to SVM vs1. You cannot assign volumes vol2 or vol3 to policy group pg1 because those volumes are contained by a different SVM.


Nested storage objects cannot belong to policy groups

You cannot assign a storage object to a policy group if its containing object or its child objects belong to a policy group. The following table lists the restrictions.

If you assign the	Then you cannot assign
SVM to a policy group	Any storage objects contained by the SVM to a policy group
Volume to a policy group	The volume's containing SVM or any child LUNs to a policy group
LUN to a policy group	The LUN's containing volume or SVM to a policy group
File to a policy group	The file's containing volume or SVM to a policy group

In the following illustration, the SVM vs3 is assigned to policy group pg2. You cannot assign volumes vol4 or vol5 to a policy group because an object in the storage hierarchy (SVM vs3) is assigned to a policy group.

QoS Policy Groups window

Storage QoS (Quality of Service) can help you manage risks related to meeting your performance objectives. Storage QoS enables you to limit the throughput of workloads and to monitor workload performance. You can use the QoS Policy groups window to manage your policy groups and view information about them.

- "Command buttons" on page 266
- "QoS Policy Groups list" on page 266
- "Details area" on page 267

Command buttons

Create	Opens the Create QoS Policy Group dialog box, which enables you to create new policy groups.
Edit	Opens the Edit QoS Policy Group dialog box, which enables you to modify the selected policy group.
Delete	Deletes the selected policy groups.
Refresh	Updates the information in the window.

QoS Policy Groups list

The QoS Policy Groups list displays the policy group name and the maximum throughput for each policy group.

Name Displays the name of the QoS policy group.

Minimum Throughput Displays the minimum throughput limit specified for

the policy group.

If you have not specified any minimum throughput value, the system automatically displays "None" as

the value and this value is case-sensitive.

Maximum Throughput Displays the maximum throughput limit specified for

the policy group.

If you have not specified any maximum throughput value, the system automatically displays "Unlimited " as the value and this value is case-sensitive.

Storage Objects Count Displays the number of storage objects assigned to

the policy group.

Details area

The area below the QoS Policy Groups list displays detailed information about the selected policy group.

Assigned Storage Objects tab Displays the name and type of the storage object

that is assigned to the selected policy group.

NIS services

You can use Storage Manager to add, edit, and manage Network Information Service (NIS) domains.

Adding NIS domains

You can maintain host information centrally by using NIS. You can use Storage Manager to add the NIS domain name of your storage system. Only one NIS domain can be active on a storage virtual machine (SVM) at any given time.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click **SVM Settings**.
- Step 3. In the Services pane, click NIS.
- Step 4. Click Create.
- Step 5. Type the NIS domain name, and then add one or more NIS servers.
- Step 6. Click Create.

Editing NIS domains

You can use Storage Manager to modify NIS domains based on the requirement for storage virtual machine (SVM) authentication and authorization.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click **SVM Settings**.
- Step 3. In the Services pane, click NIS.
- Step 4. Select the NIS domain, and then click Edit.
- Step 5. Make the required changes, and then click **Edit**.

NIS window

The NIS window enables you to view the current NIS settings for your storage system.

Command buttons

Create Opens the Create NIS Domain dialog box, which

enables you to create NIS domains.

Edit Opens the Edit NIS Domain dialog box, which

enables you to add, delete, or modify NIS servers.

Delete Deletes the selected NIS domain.

Refresh Updates the information in the window.

LDAP client services

You can use Storage Manager to add, edit, and delete LDAP client configurations.

Adding an LDAP client configuration

You can use Storage Manager to add an LDAP client configuration at the cluster level or the storage virtual machine (SVM) level if you want to use LDAP services. You must first set up an LDAP client to use LDAP services.

About this task

At the SVM level, you can add an LDAP client only for a selected SVM.

Step 1. Add an LDAP client configuration by using one of the following methods:

Cluster level: click
→ LDAP .

SVM level: click SVM → SVM Settings → LDAP Client .

- Step 2. Click Add.
- Step 3. Type the name of the LDAP client.
- Step 4. Add either the Active Directory domain or the LDAP server.
- Step 5. Click !! (advanced options), select the Schema, and click Apply.
- Step 6. Specify the Base DN and TCP Port.
- Step 7. Click **Binding**, and then specify the authentication details.
- Step 8. Click Save and Close.
- Step 9. Verify that the LDAP client that you added is displayed.

Deleting an LDAP client configuration

You can use Storage Manager to delete an LDAP client configuration at the cluster level or the storage virtual machine (SVM) level.

About this task

At the SVM level, you can delete an LDAP client only for a selected SVM.

Step 1. To delete an LDAP client configuration:

Cluster level: Click * → LDAP .

SVM level: Click SVM → SVM Settings → LDAP Client .

- Step 2. Select the LDAP client that you want to delete, and then click **Delete**.
- Step 3. Select the confirmation check box, and then click **Delete**.
- Step 4. Verify that the LDAP client that you deleted is no longer displayed.

Editing an LDAP client configuration

You can use Storage Manager to edit an LDAP client configuration at the cluster level or the storage virtual machine (SVM) level.

About this task

At the SVM level, you can edit an LDAP client only for a selected SVM.

Step 1. To edit an LDAP client configuration:

Cluster level: Click → LDAP .

SVM level: Click SVM → SVM Settings → LDAP Client .

- Step 2. Select the LDAP client that you want to modify, and then click **Edit**.
- Step 3. In the Edit LDAP Client dialog box, edit the LDAP client configuration as required.
- Step 4. Click Save and Close.
- Step 5. Verify that the changes that you made to the LDAP client configuration are displayed.

LDAP Client window

You can use the LDAP Client window to create LDAP clients for user authentication, file access authorization, user search, and mapping services between NFS and CIFS at the storage virtual machine (SVM) level.

Command buttons

Add Opens the Create LDAP Client dialog box, which

enables you to create and configure LDAP clients.

Edit Opens the Edit LDAP Client dialog box, which

enables you to edit LDAP client configurations. You

can also edit active LDAP clients.

Delete Opens the Delete LDAP Client(s) dialog box, which

enables you to delete LDAP client configurations.

You can also delete an active LDAP client.

Refresh Updates the information in the window.

LDAP client list

Displays (in tabular format) details about LDAP clients.

LDAP Client Configuration Displays the name of the LDAP client configuration

that you specified.

Storage Virtual Machine Displays the name of the SVM for each LDAP client

configuration.

Schema Displays the schema for each LDAP client.

Minimum Bind Level Displays the minimum bind level for each LDAP

client.

Active Directory Domain Displays the Active Directory domain for each LDAP

client configuration.

LDAP Servers Displays the LDAP server for each LDAP client

configuration.

Preferred Active Directory Servers

Displays the preferred Active Directory server for

each LDAP client configuration.

LDAP configuration services

You can use Storage Manager to manage LDAP configurations.

Editing active LDAP clients

You can use Storage Manager to associate an active LDAP client with a storage virtual machine (SVM), which enables you to use LDAP as a name service or for name mapping.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click SVM Settings.
- Step 3. In the Services pane, click **LDAP Configuration**.
- Step 4. In the LDAP Configuration window, click **Edit**.
- Step 5. In the Active LDAP Client dialog box, select the LDAP client that you want to edit, and perform the following actions:
 - Modify the Active Directory domain servers.
 - Modify the preferred Active Directory servers.
- Step 6. Click OK.
- Step 7. Verify that the changes that you made are updated in the LDAP Configuration window.

Deleting active LDAP clients

You can use Storage Manager to delete an active LDAP client when you do not want a storage virtual machine (SVM) to be associated with it.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click **SVM Settings**.
- Step 3. Click the **SVM Settings** tab.
- Step 4. In the Services pane, click **LDAP Configuration**.
- Step 5. Click Delete.
- Step 6. Select the confirmation check box, and then click **Delete**.

LDAP Configuration window

You can use the LDAP Configuration window to edit or delete active LDAP clients at the storage virtual machine (SVM) level.

Command buttons

Edit Opens the Active LDAP Client dialog box, which

enables you to edit the properties of the active LDAP client, such as Active Directory domain servers and preferred Active Directory servers.

Delete Opens the Delete Active LDAP Client dialog box,

which enables you to delete the active LDAP client.

Refresh Updates the information in the window.

LDAP Configuration area

Displays the details about the active LDAP client.

LDAP client name Displays the name of the active LDAP client.

Active Directory Domain Servers Displays the Active Directory domain for the active

LDAP client.

Preferred Active Directory Servers

Displays the preferred Active Directory server for

the active LDAP client.

Kerberos realm services

You can use Storage Manager to create and manage Kerberos realm services.

Creating a Kerberos realm configuration

If you want to use Kerberos authentication for client access, you must configure the storage virtual machine (SVM) to use an existing Kerberos realm. You can use Storage Manager to create a Kerberos realm configuration, which enables SVMs to use Kerberos security services for NFS.

Before you begin

- The CIFS license must be installed if CIFS shares are used, and the NFS license must be installed if an LDAP server is used.
- Active Directory (Windows 2003 or Windows 2008) with DES MD5 encryption capability must be available.
- You must have set the time zone and synchronized the time across the cluster by configuring NTP.

This prevents authentication errors, and ensures that the timestamps in log files are consistent across the cluster.

About this task

While creating a Kerberos realm, you must set the following attributes in the Create Kerberos Realm wizard:

- Kerberos realm
- KDC IP address and port number

The default port number is 88.

- Kerberos Key Distribution Center (KDC) vendor
- Administrative server IP address if the KDC vendor is not Microsoft
- Password server IP address
- · Active Directory server name and IP address if the KDC vendor is Microsoft
- Click Storage → SVMs. Step 1.
- Step 2. Select the SVM, and then click **SVM Settings**.
- Step 3. In the Services pane, click **Kerberos Realm**.
- Step 4. In the Kerberos Realm window, click Create.
- Step 5. Type or select information as prompted by the wizard.
- Step 6. Confirm the details, and then click Finish to complete the wizard.

Editing a Kerberos realm configuration

You can use Storage Manager to edit a Kerberos realm configuration at the storage virtual machine (SVM) level.

About this task

You can modify the following attributes by using the Kerberos Realm Edit wizard:

- The KDC IP address and port number
- The IP address of the administrative server if the KDC vendor is not Microsoft
- The IP address of the password server
- The Active Directory server name and IP address if the KDC vendor is Microsoft
- Click Storage → SVMs. Step 1.
- Select the SVM, and then click SVM Settings. Step 2.
- Step 3. In the Services pane, click **Kerberos Realm**.
- Step 4. In the Kerberos Realm window, select the Kerberos realm configuration that you want to modify, and then click Edit.
- Type or select information as prompted by the wizard. Step 5.
- Step 6. Confirm the details, and then click **Finish** to complete the wizard.

Deleting Kerberos realm configurations

You can use Storage Manager to delete a Kerberos realm configuration.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click **SVM Settings**.
- Step 3. In the Services pane, click **Kerberos Realm**.
- Step 4. In the Kerberos Realm window, select one or more Kerberos realm configurations that you want to delete, and then click Delete.
- Step 5. Select the confirmation check box, and then click **Delete**.

Using Kerberos with NFS for strong security

You can use Kerberos to provide strong authentication between SVMs and NFS clients to provide secure NFS communication. Configuring NFS with Kerberos increases the integrity and security of NFS client communications with the storage system.

Kerberos authentication for CIFS

With Kerberos authentication, upon connection to your CIFS server, the client negotiates the highest possible security level. However, if the client cannot use Kerberos authentication, Microsoft NTLM or NTLM V2 is used to authenticate with the CIFS server.

Kerberos Realm window

You can use the Kerberos Realm window to provide authentication between storage virtual machines (SVMs) and NFS clients to ensure secure NFS communication.

Command buttons

Create Opens the Kerberos Realm Create wizard, which

enables you to configure a Kerberos realm to

retrieve user information.

Edit Opens the Kerberos Realm Edit wizard, which

enables you to edit a Kerberos realm configuration based on the requirement for SVM authentication

and authorization.

Delete Opens the Delete Kerberos Realm(s) dialog box,

which enables you to delete Kerberos realm

configuration.

Refresh Updates the information in the window.

Kerberos Realm list

Provides details about the Kerberos realms, in tabular format.

Realm Specifies the name of the Kerberos realm.

KDC Vendor Specifies the name of the Kerberos Distribution

Center (KDC) vendor.

KDC IP Address Specifies the KDC IP address used by the

configuration.

Details area

The details area displays information such as the KDC IP address and port number, KDC vendor, administrative server IP address and port number, Active Directory server and server IP address of the selected Kerberos realm configuration.

Kerberos interface services

You can use Storage Manager to manage Kerberos interface services.

Editing Kerberos configuration

You can use Storage Manager to enable Kerberos and to edit a Kerberos configuration that is associated with a storage virtual machine (SVM), which enables the SVM to use Kerberos security services for NFS.

Before you begin

- You must have at least one Kerberos realm configured at the SVM level.
- You must have a minimum of two data LIFs on the SVM.

One data LIF is used by the Service Principal Name (SPN) for both the UNIX and CIFS-related Kerberos traffic. The other data LIF is used for accessing non-Kerberos traffic.

Note: A CIFS server is not required for basic NFS Kerberos access. A CIFS server is required for multiprotocol access or when using Active Directory as an LDAP server for name mapping purposes.

About this task

If you are using Microsoft Active Directory Kerberos, the first 15 characters of any SPNs that are used in the domain must be unique. Microsoft Active Directory has a limitation for SPNs of 15 characters maximum and does not allow duplicate SPNs.

- Click Storage → SVMs. Step 1.
- Step 2. Select the SVM, and then click SVM Settings.
- Step 3. In the Services pane, click **Kerberos Interface**.
- Step 4. In the Kerberos Interface window, select the interface, and then click Edit.
- In the Edit Kerberos Configuration dialog box, make the required changes, and then click **OK**. Step 5.

Kerberos Interface window

You can use the Kerberos Interface window to enable Kerberos and to edit the Kerberos configuration for storage virtual machines (SVMs).

Command buttons

Edit	Opens the Edit Kerberos Configuration dialog box, which you can use to enable Kerberos and to edit the Kerberos configuration associated with the SVM
	•
Refresh	Updates the information in the window.

Kerberos Interface list

Provides details about the Kerberos configuration.

Interface Name	Specifies the logical interfaces associated with the Kerberos configuration for SVMs .
Service Principal Name	Specifies the Service Principal Name (SPN) that matches the Kerberos configuration.
Realm	Specifies the name of the Kerberos realm associated with the Kerberos configuration.
Kerberos Status	Specifies whether Kerberos is enabled.

DNS/DDNS Services

You can use Storage Manager to manage DNS/DDNS services.

Enabling or disabling DDNS

You can use Storage Manager to enable or disable DDNS on a storage system.

About this task

- DNS is enabled by default.
- DDNS is disabled by default.
- Storage Manager does not perform any validation checks for the DNS and DDNS settings.
- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click SVM Settings.
- Step 3. In the Services pane, click **DNS/DDNS**.
- Step 4. In the DNS/DDNS Services window, click Edit.
- Step 5. In the Edit DNS/DDNS Settings dialog box, enable DDNS by selecting the **DDNS service** check box.
 - You can disable DDNS by clearing the **DDNS service** check box.
- Step 6. Click OK.

Editing DNS and DDNS settings

You can maintain host information centrally by using DNS. You can use Storage Manager to add or modify the DNS domain name of your storage system. You can also enable DDNS on your storage system to update the name server automatically in the DNS server.

Before you begin

You must have set up a CIFS server or an Active Directory account for the storage virtual machine (SVM) for secure DDNS to work.

About this task

Storage Manager does not perform any validation checks for the DNS and DDNS settings.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click **SVM Settings**.
- Step 3. In the Services pane, click **DNS/DDNS**.
- Step 4. Click Edit.
- Step 5. In the DNS Domains and Name Servers area, add or modify the DNS domain names and the IP addresses.
- Step 6. Select the **DDNS service** check box to enable DDNS.
 - a. Select the **Enable Secure DDNS** check box to enable secure DDNS.
 - b. Specify the fully qualified domain name (FQDN) and the time to live value for the DDNS service.
 - By default, time to live is set to 24 hours and FQDN is set to SVM name. domain name .
- Step 7. Click **OK** to save the changes that you made.

DNS/DDNS Services window

The DNS/DDNS Services window enables you to view and edit the current DNS and DDNS settings for your system.

Command buttons

Edit Opens the Edit DNS/DDNS Settings dialog box,

which you can use to add or modify DNS or DDNS details. You can also enable or disable DDNS.

Refresh Updates the information in the window.

Users

You can use Storage Manager to create and manage storage virtual machine (SVM) user accounts.

Adding SVM user accounts

You can use Storage Manager to add a storage virtual machine (SVM) user account and to specify a user login method for accessing the storage system.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click SVM Settings.
- Step 3. In the SVM User Details pane, click **Users**.
- Step 4. Click Add.
- Step 5. Type the user name and password that the user uses to connect to the storage system, and confirm the password.
- Step 6. Add one or more user login methods, and then click Add.

Changing the password for SVM user accounts

You can use Storage Manager to reset the password for a storage virtual machine (SVM) user account.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click **SVM Settings**.
- Step 3. In the SVM User Details pane, click **Users**.
- Step 4. Select the user account for which you want to modify the password, and then click **Reset Password**.
- Step 5. In the Reset Password dialog box, type the new password, confirm the new password, and then click **Change**.

Editing SVM user accounts

You can use Storage Manager to edit a storage virtual machine (SVM) user account by modifying the user login methods for accessing the storage system.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click **SVM Settings**.
- Step 3. In the SVM User Details pane, click **Users**.
- Step 4. Select the user account that you want to edit, and then click Edit.
- Step 5. Modify one or more user login methods, and then click **Modify**.

Locking or unlocking SVM user accounts

You can use Storage Manager to lock or unlock storage virtual machine (SVM) user accounts.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click **SVM Settings**.
- Step 3. In the SVM User Details pane, click Users.
- Step 4. In the Users window, select the user account for which you want to modify the account status, and then click either **Lock** or **Unlock**, as required.

Users window

You can use the Users window to manage user accounts, to reset the password of a user, and to view information about all of the user accounts.

Command buttons

Add Opens the Add User dialog box, which enables you

to add user accounts.

Edit Opens the Modify User dialog box, which enables

you to modify user login methods.

Note: It is a best practice to use a single role for all of the access and authentication methods of a user

account.

Delete Enables you to delete a selected user account.

Change Password Opens the Change Password dialog box, which

enables you to reset a selected user's password.

Locks the user account.

Refresh Updates the information in the window.

Users list

The area below the users list displays detailed information about the selected user.

User Displays the name of the user account.

Account Locked Displays whether the user account is locked.

User Login Methods area

Application Displays the access method that a user can use to access the storage system. The supported access

methods include the following:

System console (console)

• HTTP(S) (http)

ONTAP API (ontapi)

Service Processor (service-processor)

SSH (ssh)

Authentication Displays the default supported authentication

method, which is "password".

Role Displays the role of a selected user.

Roles

You can use Storage Manager to create and manage roles.

Adding roles

You can use Storage Manager to add an access-control role and to specify the command or command directory that the users of the role can access. You can also control the level of access the role has to the command or command directory, and you can specify a query that applies to the command or command directory.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click **SVM Settings**.
- Step 3. In the SVM User Details pane, click **Roles**.
- Step 4. Click Add.
- Step 5. In the Add Role dialog box, specify the role name, and then add the role attributes.
- Step 6. Click Add.

Editing roles

You can use Storage Manager to modify the access of an access-control role to a command or command directory and to restrict a user's access to only a specified set of commands.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click **SVM Settings**.
- Step 3. In the SVM User Details pane, click Roles.
- Step 4. Select the role that you want to modify, and then click **Edit**.
- Step 5. Modify the role attributes, and then click **Modify**.

Roles window

You can use the Roles window to manage the roles that are associated with user accounts.

Command buttons

Add Opens the Add Role dialog box, which enables you

to create an access-control role and specify the command or command directory that the role's

users can access.

Edit Opens the Edit Role dialog box, which enables you

to add or modify role attributes.

Refresh Updates the information in the window.

Roles list

The roles list provides a list of roles that are available to be assigned to users.

Role Attributes area

The details area displays the role attributes, such as the command or command directory that the selected role can access, the access level, and the query that applies to the command or command directory.

UNIX

You can use Storage Manager to maintain a list of local UNIX users and groups for each storage virtual machine (SVM) .

UNIX window

You can use the UNIX window to maintain a list of local UNIX users and groups for each storage virtual machine (SVM) . You can use local UNIX users and groups for authentication and name mappings.

Groups tab

You can use the Groups tab to add, edit, or delete UNIX groups that are local to an SVM.

Command buttons

Add Group Opens the Add Group dialog box, which enables

you to create UNIX groups that are local to SVMs. Local UNIX groups are used with local UNIX users.

Edit Opens the Edit Group dialog box, which enables

you to edit a group ID.

Deletes the selected group.

Refresh Updates the information in the window.

Groups list

Group Name Displays the name of the group.

Group ID Displays the ID of the group.

Users tab

You can use the **Users** tab to add, edit, and delete UNIX users that are local to SVMs.

Command buttons

Add User Opens the Add User dialog box, which enables you

to create UNIX users that are local to SVMs.

Edit Opens the Edit User dialog box, which enables you

to edit the User ID, UNIX group to which the user

belongs, and the full name of the user.

Displays the ID of the user.

Delete Deletes the selected user.

Refresh Updates the information in the window.

Users list

User ID

User Name Displays the name of the user.

Full Name Displays the full name of the user.

Primary Group ID Displays the ID of the group to which the user

belongs.

Primary Group Name Displays the name of the group to which the user

belongs.

Windows

You can use Storage Manager to create and manage Windows groups and user accounts.

Creating a local Windows group

You can use Storage Manager to create local Windows groups that can be used for authorizing access to the data contained in the storage virtual machine (SVM) over an SMB connection. You can also assign the privileges that define the user rights or capabilities that a member of the group has when performing administrative activities.

Before you begin

CIFS server must be configured for the SVM.

About this task

You can specify a group name with or without the local domain name.

The local domain is the name of the CIFS server for the SVM . For example, if the CIFS server name of the SVM is "CIFS_SERVER" and you want to create an "engineering" group, you can specify either "engineering" or "CIFS_SERVER\engineering" as the group name.

The following rules apply when using a local domain as part of the group name:

You can specify only the local domain name for the SVM to which the group is applied.

For example, if the local CIFS server name is "CIFS_SERVER", you cannot specify "CORP_SERVER \group1" as the group name.

- You cannot use "BUILTIN" as a local domain in the group name.

For example, you cannot create a group with "BUILTIN\group1" as the name.

You cannot use an Active Directory domain as a local domain in the group name.

For example, you cannot create a group named "AD_DOM\group1", where "AD_DOM" is the name of an Active Directory domain.

- You cannot use a group name that already exists.
- The group name that you specify must meet the following requirements:
 - Must not exceed 256 characters
 - Must not end in a period
 - Must not include commas
 - Must not include any of the following printable characters: " / \[]: | < > + = ; ? * @
 - Must not include characters in the ASCII range 1 through 31, which are non-printable
- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click **SVM Settings**.
- Step 3. In the Host Users and Groups pane, click **Windows**.
- Step 4. In the **Groups** tab, click **Create**.
- Step 5. In the Create Group dialog box, specify a name for the group and a description that helps you to identify the new group.
- Step 6. Assign a set of privileges to the group.

 You can select the privileges from the predefined set of supported privileges.
- Step 7. Click **Add** to add users to the group.
- Step 8. In the Add Members to Group dialog box, perform one of the following actions:

Specify the Active Directory user or Active Directory group to be added to a particular local group.

Select the users from the list of available local users in the SVM.

Click OK.

Step 9. Click Create.

Result

The local Windows group is created and is listed in the Groups window.

Editing local Windows group properties

You can manage local group memberships by adding and removing a local user, an Active Directory user, or an Active Directory group by using Storage Manager. You can modify the privileges that are assigned to a group and the description of a group to easily identify the group.

About this task

You must keep the following in mind when adding members to or removing members from a local Windows group:

- You cannot add users to or remove users from the special Everyone group.
- You cannot add a local Windows group to another local Windows group.
- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click **SVM Settings**.
- Step 3. In the Host Users and Groups pane, click **Windows**.

- Step 4. In the Groups tab, click Edit.
- Step 5. Specify a name for the group and a description to identify the new group.
- Step 6. Assign a set of privileges to the group.

 You can select the privileges from the predefined set of supported privileges.
- Step 7. Click **Add** to add users to the group.
- Step 8. In the Add Members window, perform one of the following actions:

Specify the Active Directory user or Active Directory group to be added to a particular local group.

Select the users from the list of available local users in the storage virtual machine (SVM).

Step 9. Click Edit.

Result

The local Windows group settings are modified, and the changes are displayed in the **Groups** tab.

Adding user accounts to a Windows local group

You can add a local user, an Active Directory user, or an Active Directory group (if you want users to have the privileges that are associated with that group) to a Windows local group by using Storage Manager.

Before you begin

- The group must exist before you can add a user to the group.
- The user must exist before you can add the user to a group.

About this task

You must keep the following in mind when adding members to a local Windows group:

- You cannot add users to the special Everyone group.
- You cannot add a local Windows group to another local Windows group.
- You cannot add a user account that contains a space in the user name by using Storage Manager.

You can either rename the user account or add the user account by using the command-line interface (CLI).

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click SVM Settings.
- Step 3. In the Host Users and Groups pane, click Windows.
- Step 4. In the **Groups** tab, select the group to which you want to add a user, and then click **Add Members**.
- Step 5. In the Add Members window, perform one of the following actions:

Specify the Active Directory user or Active Directory group to be added to a particular local group.

Select the users from the list of available local users in the storage virtual machine (SVM).

Step 6. Click OK.

Result

The user that you added is listed in the Users tab of the Groups tab.

Renaming a local Windows group

You can use Storage Manager to rename a local Windows group to identify the group more easily.

About this task

- The new group name must be created in the same domain as the old group name.
- The group name must meet the following requirements:
 - Must not exceed 256 characters
 - Must not end in a period
 - Must not include commas
 - Must not include any of the following printable characters: " / \ []: | < > + = ; ? * @
 - Must not include characters in the ASCII range 1 through 31, which are non-printable
- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click **SVM Settings**.
- Step 3. In the Host Users and Groups pane, click Windows.
- Step 4. In the Groups tab, select the group that you want to rename, and then click Rename.
- Step 5. In the Rename Group window, specify a new name for the group.

Result

The local group name is changed, and the group is listed with the new name in the Groups window.

Deleting a local Windows group

You can use Storage Manager to delete a local Windows group from a storage virtual machine (SVM) if the group is no longer required for determining access rights to the data contained on the SVM or for assigning SVM user rights (privileges) to group members.

About this task

- Removing a local group removes the membership records of the group.
- The file system is not altered.

Windows Security Descriptors on files and directories that refer to this group are not adjusted.

- The special "Everyone" group cannot be deleted.
- Built-in groups such as BUILTIN\Administrators and BUILTIN\Users cannot be deleted.
- Step 1. Click **Storage** → **SVMs**.
- Step 2. Select the SVM, and then click SVM Settings.
- Step 3. In the Host Users and Groups pane, click Windows.
- Step 4. In the Groups tab, select the group that you want to delete, and then click Delete.
- Step 5. Click Delete.

Result

The local group is deleted along with its membership records.

Creating a local Windows user account

You can use Storage Manager to create a local Windows user account that can be used to authorize access to the data contained in the storage virtual machine (SVM) over an SMB connection. You can also use local Windows user accounts for authentication when creating a CIFS session.

Before you begin

• The CIFS server must be configured for the SVM.

About this task

A local Windows user name must meet the following requirements:

- Must not exceed 20 characters
- Must not end in a period
- Must not include commas
- Must not include any of the following printable characters: " / \[]: | < > + = ; ? * @
- Must not include characters in the ASCII range 1 through 31, which are non-printable

The password must meet the following criteria:

- Must be at least six characters in length
- Must not contain the user account name
- Must contain characters from at least three of the following four categories:
 - English uppercase characters (A through Z)
 - English lowercase characters (a through z)
 - Base 10 digits (0 through 9)
 - Special characters: ~!@#0^&*_-+=`\|()[]:;"'<>,.?/
- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click **SVM Settings**.
- Step 3. In the Host Users and Groups pane, click **Windows**.
- Step 4. In the **Users** tab, click **Create**.
- Step 5. Specify a name for the local user.
- Step 6. Specify the full name of the local user and a description that helps you to identify this new user.
- Step 7. Enter a password for the local user, and confirm the password. The password must meet the password requirements.
- Step 8. Click **Add** to assign group memberships to the user.
- Step 9. In the Add Groups window, select the groups from the list of available groups in the SVM.
- Step 10. Select **Disable this account** to disable this account after the user is created.
- Step 11. Click Create.

Result

The local Windows user account is created and is assigned membership to the selected groups. The user account is listed in the **Users** tab .

Editing the local Windows user properties

You can use Storage Manager to modify a local Windows user account if you want to change an existing user's full name or description, or if you want to enable or disable the user account. You can also modify the group memberships that are assigned to the user account.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click **SVM Settings**.
- Step 3. In the Host Users and Groups pane, click Windows.
- Step 4. In the **Users** tab, click **Edit**.
- Step 5. In the Modify User window, make the required changes.
- Step 6. Click Modify.

Result

The attributes of the local Windows user account are modified and are displayed in the Users tab.

Assigning group memberships to a user account

You can use Storage Manager to assign group membership to a user account if you want a user to have the privileges that are associated with a particular group.

Before you begin

- The group must exist before you can add a user to the group.
- The user must exist before you can add the user to a group.

About this task

You cannot add users to the special *Everyone* group.

- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click **SVM Settings**.
- Step 3. In the Host Users and Groups pane, click Windows.
- Step 4. In the **Users** tab, select the user account to which you want to assign group memberships, and then click **Add to Group**.
- Step 5. In the Add Groups window, select the groups to which you want to add the user account.
- Step 6. Click OK.

Result

The user account is assigned membership to all of the selected groups, and the user has the privileges that are associated with these groups.

Renaming a local Windows user

You can use Storage Manager to rename a local Windows user account to identify the local user more easily.

- The new user name must be created in the same domain as the previous user name.
- The user name that you specify must meet the following requirements:

- Must not exceed 20 characters
- Must not end in a period
- Must not include commas
- Must not include any of the following printable characters: " / \ []: | < > + = ; ? * @
- Must not include characters in the ASCII range 1 through 31, which are non-printable
- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click **SVM Settings**.
- Step 3. In the Host Users and Groups pane, click Windows.
- Step 4. In the **Users** tab, select the user that you want to rename, and then click **Rename**.
- Step 5. In the Rename User window, specify a new name for the user.
- Step 6. Confirm the new name, and then click **Rename**.

The user name is changed, and the new name is listed in the Users tab.

Resetting the password of a Windows local user

You can use Storage Manager to reset the password of a Windows local user. For example, you might want to reset the password if the current password is compromised or if the user has forgotten the password.

About this task

The password that you set must meet the following criteria:

- Must be at least six characters in length
- Must not contain the user account name
- Must contain characters from at least three of the following four categories:
 - English uppercase characters (A through Z)
 - English lowercase characters (a through z)
 - Base 10 digits (0 through 9)
 - Special characters: ~!@#0^&*_-+=`\|()[]:;"'<>,.?/
- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click **SVM Settings**.
- Step 3. In the Host Users and Groups pane, click **Windows**.
- Step 4. In the **Users** tab , select the user whose password you want to reset, and then click **Set Password**
- Step 5. In the Reset Password dialog box, set a new password for the user.
- Step 6. Confirm the new password, and then click **Reset**.

Deleting a local Windows user account

You can use Storage Manager to delete a local Windows user account from a storage virtual machine (SVM) if the user account is no longer required for local CIFS authentication to the CIFS server of the SVM or for determining access rights to the data contained in the SVM.

- Standard users such as Administrator cannot be deleted.
- ONTAP removes references to the deleted local user from the local-group database, from the local-user-membership, and from the user-rights database.
- Step 1. Click Storage → SVMs.
- Step 2. Select the SVM, and then click **SVM Settings**.
- Step 3. In the Host Users and Groups pane, click Windows.
- Step 4. In the Users tab, select the user account that you want to delete, and then click Delete.
- Step 5. Click **Delete**.

The local user account is deleted along with its group membership entries.

Windows window

You can use the Windows window to maintain a list of local Windows users and groups for each storage virtual machine (SVM) on the cluster. You can use the local Windows users and groups for authentication and name mappings.

- "Users tab" on page 287
- "Groups tab" on page 288

Users tab

You can use the Users tab to view the Windows users that are local to an SVM.

Command buttons

Command buttons	
Create	Opens the Create User dialog box, which enables you to create a local Windows user account that can be used to authorize access to data contained in the SVM over an SMB connection.
Edit	Opens the Edit User dialog box, which enables you to edit local Windows user properties, such as group memberships and the full name. You can also enable or disable the user account.
Delete	Opens the Delete User dialog box, which enables you to delete a local Windows user account from an SVM if it is no longer required.
Add to Group	Opens the Add Groups dialog box, which enables you to assign group membership to a user account if you want the user to have privileges associated with that group.
Set Password	Opens the Reset Password dialog box, which enables you to reset the password of a Windows local user. For example, you might want to reset the password if the password is compromised or if the user has forgotten the password.

Rename Opens the Rename User dialog box, which enables

you to rename a local Windows user account to

more easily identify it.

Refresh Updates the information in the window.

Users list

Name Displays the name of the local user.

Full Name Displays the full name of the local user.

Account Disabled Displays whether the local user account is enabled

or disabled.

Description Displays the description for this local user.

Users Details Area

Group Displays the list of groups in which the user is a

member.

Groups tab

You can use the Groups tab to add, edit, or delete Windows groups that are local to an SVM.

Command buttons

Create Opens the Create Group dialog box, which enables

you to create local Windows groups that can be used for authorizing access to data contained in

SVMs over an SMB connection.

Edit Opens the Edit Group dialog box, which enables

you to edit the local Windows group properties, such as privileges assigned to the group and the

description of the group.

Delete Opens the Delete Group dialog box, which enables

you to delete a local Windows group from an SVM if

it is no longer required.

Add Members Opens the Add Members dialog box, which enables

you to add local or Active Directory users, or Active

Directory groups to the local Windows group.

Rename Group dialog box, which

enables you to rename a local Windows group to

more easily identify it.

Refresh Updates the information in the window.

Groups list

Name Displays the name of the local group.

Description Displays the description for this local group.

Groups Details Area

Privileges Displays the list of privileges associated with the

selected group.

Users Displays the list of local users associated with the

selected group.

Name mapping

You can use Storage Manager to specify name mapping entries to map users from different platforms.

Name mapping conversion rules

An ONTAP system keeps a set of conversion rules for each SVM. Each rule consists of two pieces: a *pattern* and a *replacement*. Conversions start at the beginning of the appropriate list and perform a substitution based on the first matching rule. The pattern is a UNIX-style regular expression. The replacement is a string containing escape sequences representing subexpressions from the pattern, as in the UNIX sed program.

How group mapping supports multiprotocol access to Infinite Volumes

Group mapping improves the accuracy of permissions that appear when NFSv4.1 clients display the ACL of a file or directory that has NTFS file permissions. If an Infinite Volume supports both NFSv4.1 ACLs and SMB, you should configure group mapping, which is similar to user mapping.

Why group mapping is required

Groups are often used in ACLs to simplify security management. However, groups in multiple Windows domains cannot be easily translated to the groups of a single NFSv4.1 domain.

Mapping groups from Windows to UNIX ensures that group names appear when NFSv4.1 ACLs are displayed on NFSv4.1 clients.

If a Windows group is not mapped to a UNIX group and a default UNIX group is not configured, the Windows group is displayed to an NFSv4.1 client as "nobody" (specifically nobody@ v4-id-domain).

What group mapping is required

If an Infinite Volume supports both SMB and NFSv4.1 ACLs, you should perform the following configurations:

- Create a Windows-to-UNIX mapping for every Windows group.
- Define a default UNIX group that is used when no mapping exists for a Windows group and the lowercase name of the Windows group is not a valid group name in the UNIX domain.

Comparison of user and group mapping

Group mapping and user mapping share the following similarities:

- Group mapping and user mapping can both be defined by using either ONTAP or LDAP.
- If group mapping and user mapping are defined by using ONTAP, the mappings are defined in a similar way and by using the same conversion rules.

For information about conversion rules in user mapping and group mapping, see either the NFS Reference or the SMB/CIFS Reference.

Group mapping is unique in the following ways:

Group mapping is available only on storage virtual machines (SVMs) with Infinite Volume, not on SVMs.

- Group mapping is required only if an SVM is configured for both SMB and NFSv4.1, including NFSv4.1
 ACLs.
- Group mapping does not affect access; group mapping affects only what NFSv4.1 clients display.

During access checks, a user's group membership is determined in the same way on all SVMs.

Group mapping is required only in one direction—from Windows to UNIX.

UNIX groups do not have to be mapped to Windows groups.

Name Mapping window

You can use the Name Mapping window to specify the name mapping entries to map users from different platforms. If an Infinite Volume supports both NFSv4.1 ACLs and SMB, you can also configure group mappings.

Name Mappings

You can create and use name mappings to map your UNIX users to Windows users, Windows users to UNIX users, or Kerberos users to UNIX users.

Command buttons

Add	Opens the Add Name Mapping Entry dialog box,

which enables you to create a name mapping on

storage virtual machines (SVMs).

Edit Opens the Edit Name Mapping Entry dialog box,

which enables you to edit a name mapping on

SVMs.

Delete Opens the Delete Name Mapping Entries dialog

box, which enables you to delete a name mapping

entry.

Swap Opens the Swap Name Mapping Entries dialog box,

which enables you to interchange positions of the

two selected name mapping entries.

Refresh Updates the information in the window.

Name mappings list

Position Specifies the name mapping's position in the

priority list. Name mappings are applied in the order

in which they occur in the priority list.

Pattern Specifies the user name pattern that must be

matched.

Replacement Specifies the replacement pattern for the user

name.

Direction Specifies the direction of the name mapping.

Possible values are krb_unix for a Kerberos-to-UNIX name mapping, win_unix for a Windows-to-UNIX name mapping, and unix_win for a UNIX-to-

Misselesses as a second and annix_with

Windows name mapping.

Group Mappings

If an Infinite Volume supports both NFSv4.1 ACLs and SMB, you can create and use group mappings to map your UNIX groups to Windows groups, Windows groups to UNIX groups, or Kerberos groups to UNIX groups.

Command buttons

Add Opens the Add Group Mapping Entry dialog box,

which enables you to create a group mapping on

SVMs.

Edit Opens the Edit Group Mapping Entry dialog box,

which enables you to edit the group mapping on

SVMs.

Delete Opens the Delete Group Mapping Entries dialog

box, which enables you to delete a group mapping

entry.

Swap Opens the Swap Group Mapping Entries dialog box,

which enables you to interchange positions of the

two selected group mapping entries.

Refresh Updates the information in the window.

Group mappings list

Position Specifies the group mapping's position in the

priority list. Group mappings are applied in the order

in which they occur in the priority list.

Pattern Specifies the user name pattern that must be

matched.

Replacement Specifies the replacement pattern for the user

names.

Direction Specifies the direction of the group mapping.

Possible values are krb_unix for a Kerberos-to-UNIX group mapping, win_unix for a Windows-to-UNIX group mapping, and unix win for a UNIX-to-

Windows group mapping.

Chapter 12. Managing data protection

You can use Storage Manager to protect your data by creating and managing mirror relationships, vault relationships, and mirror and vault relationships. You can also create and manage the Snapshot policies and schedules.

Mirror relationships

You can use Storage Manager to create and manage mirror relationships by using the mirror policy.

Creating a mirror relationship from a destination SVM

You can use Storage Manager to create a mirror relationship from the destination storage virtual machine (SVM), and to assign a policy and schedule to the mirror relationship. The mirror copy enables quick availability of data if the data on the source volume is corrupted or lost.

Before you begin

- The source cluster must be running ONTAP 8.2.2 or later.
- The SnapMirror license must be enabled on the source cluster and destination cluster.

Note: For some platforms, it is not mandatory for the source cluster to have the SnapMirror license enabled if the destination cluster has the SnapMirror license enabled.

- While mirroring a volume, if you select a SnapLock volume as the source, then the SnapMirror license and SnapLock license must be installed on the destination cluster.
- The source cluster and destination cluster must be in a healthy peer relationship.
- The destination SVM must have space available.
- A source volume of type read/write (rw) must exist.
- The FlexVol volumes must be online and must be of type read/write.
- The SnapLock aggregate type must be of the same type.
- If you are connecting from a cluster running ONTAP 9.2 or earlier to a remote cluster on which Security
 Assertion Markup Language (SAML) authentication is enabled, password-based authentication must be
 enabled on the remote cluster.

About this task

- Storage Manager does not support a cascade relationship. For example, a destination volume in a relationship cannot be the source volume in another relationship.
- You cannot create a mirror relationship between a sync-source SVM and a sync-destination SVM in a MetroCluster configuration.
- You can create a mirror relationship between sync-source SVMs in a MetroCluster configuration.
- You can create a mirror relationship from a volume on a sync-source SVM to a volume on a data-serving SVM.
- You can create a mirror relationship from a volume on a data-serving SVM to a data protection (DP) volume on a sync-source SVM.
- You can create a mirror relationship between SnapLock volumes of the same type only.

For example, if the source volume is a SnapLock Enterprise volume, then the destination volume must also be a SnapLock Enterprise volume. You must ensure that the destination SVM has aggregates of the same SnapLock type available.

© Copyright Lenovo 2018, 2023 293

- The destination volume that is created for a mirror relationship is not thin provisioned.
- A maximum of 25 volumes can be protected in one selection.
- Step 1. Click Protection → Relationships.
- Step 2. In the Relationships window, click **Create**.
- Step 3. In the Browse SVM dialog box, select an SVM for the destination volume.
- Step 4. In the Create Protection Relationship dialog box, select Mirror from the Relationship Type dropdown list.
- Step 5. Specify the cluster, the SVM, and the source volume.

 If the specified cluster is running a version of ONTAP software earlier than ONTAP 9.3, then only peered SVMs are listed. If the specified cluster is running ONTAP 9.3 or later, peered SVMs and permitted SVMs are listed.
- Step 6. For FlexVol volumes, specify a volume name suffix.

 The volume name suffix is appended to the source volume names to generate the destination volume names.
- Step 7. Optional: Click **Browse**, and then change the mirror policy.
- Step 8. Select a schedule for the relationship from the list of existing schedules.
- Step 9. Optional: Select **Initialize Relationship** to initialize the mirror relationship.
- Step 10. Enable FabricPool-enabled aggregates, and then select an appropriate tiering policy.
- Step 11. Click Create.

If you chose to create a destination volume, a destination volume of type *dp* is created, with the language attribute set to match the language attribute of the source volume.

A mirror relationship is created between the source volume and the destination volume. The base Snapshot copy is transferred to the destination volume if you have opted to initialize the relationship.

Deleting mirror relationships

You can delete a mirror relationship and permanently end the mirror relationship between the source and destination volumes. When a mirror relationship is deleted, the base Snapshot copy on the source volume is deleted.

About this task

It is a best practice to break the mirror relationship before deleting the relationship.

- Step 1. Click **Protection** → **Relationships**.
- Step 2. Select the mirror relationship that you want to delete and click **Delete**.
- Step 3. Select the confirmation check boxes to delete the mirror relationship and to release the base Snapshot copies, and then click **Delete**.
- Step 4. Optional: If you are deleting mirror relationship between Infinite Volumes, click **Run in Background** to run the operation in the background.

Result

The relationship is deleted and the base Snapshot copy on the source volume is deleted.

Editing mirror relationships

You can use Storage Manager to edit a mirror relationship either by selecting an existing policy or schedule in the cluster, or by creating a policy or schedule.

- You cannot edit a mirror relationship that is created between a volume in Data ONTAP 8.2.1 and a volume in ONTAP 8.3 or later.
- You cannot edit the parameters of an existing policy or schedule.
- You can modify the relationship type of a version-flexible mirror relationship, vault relationship, or mirror and vault relationship by modifying the policy type.
- Step 1. Click **Protection** → **Relationships**.
- Step 2. Select the mirror relationship for which you want to modify the policy or schedule, and then click **Edit** .
- Step 3. In the Edit Relationship dialog box, select an existing policy or create a policy:

If you want to	Do the following
Select an existing policy	Click Browse , and then select an existing policy.
Create a policy	 Click Create Policy . Specify a name for the policy. Set the priority for scheduled transfers.
	Low indicates that the transfer has the least priority and is usually scheduled after normal priority transfers. By default, the priority is set to Normal.
	 Select the Transfer All Source Snapshot Copies check box to include the "all_ source_snapshots" rule to the mirror policy, which enables you to back up all of the Snapshot copies from the source volume.
	 Select the Enable Network Compression check box to compress the data that is being transferred.
	6. Click Create .

Step 4. Specify a schedule for the relationship:

If	Do the following
You want to assign an existing schedule	From the list of schedules, select an existing schedule.
You want to create a schedule	 Click Create Schedule . Specify a name for the schedule. Select either Basic or Advanced . Basic specifies only the day of the week, time, and the transfer interval. Advanced creates a cron-style schedule. Click Create .
You do not want to assign a schedule	Select None .

Step 5. Click **OK** to save the changes.

Initializing mirror relationships

When you start a mirror relationship for the first time, you have to initialize the relationship. Initializing a relationship consists of a complete baseline transfer of data from the source volume to the destination. You can use Storage Manager to initialize a mirror relationship if you have not already initialized the relationship while creating it.

About this task

You cannot initialize a mirror relationship if the Infinite Volume has storage classes.

- Step 1. Click Protection → Relationships.
- Step 2. Select the mirror relationship that you want to initialize.
- Step 3. Click Operations → Initialize.
- Step 4. Select the confirmation check box and click Initialize.
- Step 5. Optional: If you are initializing a mirror relationship between Infinite Volumes, click **Run in Background** to run the operation in the background.
- Step 6. Verify the status of the mirror relationship in the Protection window.

Result

A Snapshot copy is created and transferred to the destination. This Snapshot copy is used as a baseline for subsequent incremental Snapshot copies.

Updating mirror relationships

You can initiate an unscheduled mirror update of the destination. You might have to perform a manual update to prevent data loss due to an upcoming power outage, scheduled maintenance, or data migration.

Before you begin

The mirror relationship must be in a Snapmirrored state.

For Infinite Volumes with storage classes, if new constituents have been added to the source Infinite Volume since the mirror relationship was created, you cannot use Storage Manager to update the destination Infinite Volume.

Instead, you should use OnCommand Workflow Automation.

- Step 1. Click **Protection** → **Relationships**.
- Step 2. Select the mirror relationship for which you want to update the data, and click **Operations** → **Update** .
- Step 3. Choose one of the following options:

Select **On demand** to perform an incremental transfer from the recent common Snapshot copy between the source and destination volumes.

Select **Select Snapshot copy** and specify the Snapshot copy that you want to transfer.

- Step 4. Optional: Select **Limit transfer bandwidth to** to limit the network bandwidth used for transfers and specify the maximum transfer speed.
- Step 5. Click **Update**.
- Step 6. Optional: If you are initiating data transfers on an Infinite Volume, click **Run in Background** to run the operation in the background.

 It takes longer to update an Infinite Volume than a FlexVol volume.
- Step 7. Verify the transfer status in the Details tab.

Quiescing mirror relationships

Use Storage Manager to quiesce a mirror destination to stabilize the destination before creating a Snapshot copy. The quiesce operation enables active mirror transfers to finish and disables future transfers for the mirroring relationship.

About this task

You can quiesce only mirror relationships that are in the Snapmirrored state.

- Step 1. Click **Protection** → **Relationships**.
- Step 2. Select the mirror relationship that you want to quiesce.
- Step 3. Click Operations → Quiesce.
- Step 4. Select the confirmation check box and click Quiesce.
- Step 5. Optional: If you are quiescing data transfers on an Infinite Volume, click **Run in Background** to run the operation in the background.

 It takes longer to quiesce data transfers of an Infinite Volume than of a FlexVol volume.

Resuming mirror relationships

You can resume a quiesced mirror relationship. When you resume the relationship, normal data transfer to the mirror destination is resumed and all the mirror activities are restarted.

About this task

If you have quiesced a broken mirror relationship from the command-line interface (CLI), you cannot resume the relationship from Storage Manager. You must use the CLI to resume the relationship.

Step 1. Click Protection → Relationships.

- Step 2. Select the mirror relationship that you want to resume.
- Step 3. Click **Operations** → **Resume** .
- Step 4. Select the confirmation check box and click **Resume**.

Data transfer to the mirror destination is resumed for the selected mirror relationship.

Breaking SnapMirror relationships

You must break a mirror relationship if a mirror source becomes unavailable and you want client applications to be able to access the data from the mirror destination. After the mirror relationship is broken, the destination volume type changes from DP to RW.

Before you begin

- The SnapMirror destination must be in the quiesced state or idle state.
- The destination volume must be mounted on the destination storage virtual machine (SVM) namespace.

About this task

- You can use the destination volume to serve data while you repair or replace the source, update the source, and reestablish the original configuration of the systems.
- You can break SnapMirror relationships between ONTAP systems and SolidFire storage systems.
- If you are break a FlexGroup volume relationship, you must refresh the page to view the updated status of the relationship.
- Step 1. Click **Protection** → **Relationships**.
- Step 2. Select the mirror relationship that you want to break.
- Step 3. Click Operations → Break.
- Step 4. Select the confirmation check box, and then click **Break**.

Result

The data protection SnapMirror relationship is broken. The destination volume type changes from data protection (DP) read-only to read/write. The system stores the base Snapshot copy for the data protection mirror relationship for later use.

For an Infinite Volume, a new mirror is created on the volume if the namespace mirror constituent does not already exist. The namespace mirror constituent is required on the destination volume to provide data protection to the namespace constituent.

Resynchronizing mirror relationships

You can reestablish a mirror relationship that was broken earlier. You can perform a resynchronization operation to recover from a disaster that disabled the source volume. For Infinite Volumes, the resynchronization operation recovers the volume and its constituents.

Before you begin

The source and destination clusters and the source and destination storage virtual machines (SVMs) must be in peer relationships.

• When you perform a resynchronization operation, the contents on the mirror destination are overwritten by the contents on the source.

Attention: The resynchronization operation can cause loss of newer data written to the destination volume after the base Snapshot copy was created.

- If the Last Transfer Error field in the Protection window recommends a resynchronization operation, you
 must first break the relationship and then perform the resynchronization operation.
- For Infinite Volumes with storage classes, if new constituents have been added to the source Infinite
 Volume since the mirror relationship was created, you cannot use Storage Manager to resynchronize the
 mirror relationship.

Instead, you should use OnCommand Workflow Automation .

- Step 1. Click **Protection** → **Relationships**.
- Step 2. Select the mirror relationship that you want to resynchronize.
- Step 3. Click **Operations** → **Resync**.
- Step 4. Select the confirmation check box and click Resync.
- Step 5. Optional: If you are resynchronizing a mirror relationship between Infinite Volumes, click **Run in Background** to run the operation in the background.

Reverse resynchronizing mirror relationships

You can use Storage Manager to reestablish a mirror relationship that was previously broken. In a reverse resynchronization operation, you reverse the functions of the source and destination.

Before you begin

The source volume must be online.

About this task

- You can use the destination volume to serve data while you repair or replace the source, update the source, and reestablish the original configuration of the systems.
- When you perform reverse resynchronization, the contents on the mirror source are overwritten by the contents on the destination.

Attention: This operation can cause data loss on the source.

- When you perform reverse resynchronization, the mirror policy of the relationship is set to DPDefault and the mirror schedule is set to None.
- You cannot use Storage Manager to perform a reverse resynchronization operation in the following scenarios:
 - For Infinite Volumes with storage classes, if new constituents have been added to the source Infinite Volume since the mirror relationship was created.

You should use OnCommand Workflow Automation instead.

 For a mirror relationship between Infinite Volumes, if the cluster peer relationship is in an unhealthy state.

You should use the command-line interface (CLI) instead.

- Step 1. Click Protection → Relationships.
- Step 2. Select the mirror relationship that you want to reverse.

- Step 3. Click Operations → Reverse Resync.
- Step 4. Select the confirmation check box, and click Reverse Resync.
- Step 5. Optional: If you are reverse resynchronizing a mirror relationship between Infinite Volumes, click **Run in Background** to run the operation in the background.

Aborting a mirror transfer

You can abort a volume replication operation before the data transfer is complete. You can abort a scheduled update, a manual update, or an initial data transfer.

- Step 1. Click **Protection** → **Relationships**.
- Step 2. Select the relationship for which you want to stop the data transfer, and click **Operations** → **Abort**
- Step 3. Select the Yes, I want to abort the transfer check box to confirm the operation.
- Step 4. Optional: Select the **Keep any partially transferred data** check box to retain the data that is already transferred to the destination volume.
- Step 5. Click Abort.
- Optional: If you are aborting data transfers on an Infinite Volume, click Run in Background to run the operation in the background.
 It takes longer to abort data transfers of Infinite Volumes than of a FlexVol volume.

The transfer status is displayed as "Aborting" until the operation is complete and displayed as "Idle" after the operation is complete.

Restoring a volume in a mirror relationship

For a version-independent mirror relationship, you can use Storage Manager to restore Snapshot copies to a source volume or to other volumes if the source data is corrupted and is no longer usable. You can replace the original data with the Snapshot copies in the destination volume.

Before you begin

- The SnapMirror license must be enabled on both the source cluster and the destination cluster or on the nodes that contain the source volume and destination volume.
- The source cluster and destination cluster must be in a healthy peer relationship.
- The source aggregate or any other aggregate that you select for the restore operation must be a 64-bit aggregate.
- If you are connecting from a cluster running ONTAP 9.2 or earlier to a remote cluster on which SAML authentication is enabled, password-based authentication must also be enabled on the remote cluster.

- You cannot restore a volume that is in a mirror relationship between a source storage virtual machine (SVM) and a destination SVM in a MetroCluster configuration.
- You can restore a mirror relationship between sync-source SVMs in a MetroCluster configuration.
- You can restore a mirror relationship from a volume on a sync-source SVM to a default SVM.
- You can restore a mirror relationship from a volume on a default SVM to a DP volume on a sync-source SVM.
- Step 1. Click Protection → Relationships.
- Step 2. Select the mirror relationship, and then click **Operations** → **Restore**.

Step 3. In the Restore dialog box, restore the data to the source volume in the mirror relationship or select any other volume:

If you want to restore the data to	Do this
The source volume	 Select Source volume . Go to Step 7.
Any other volume	Select Other volume , and then select the cluster and SVM from the list.

Step 4. Restore the data to a new volume or to an existing volume:

If you want to restore the data to	Do this
A new volume	If you want to change the default name, displayed in the format destination_SVM_name_destination_volume_name_ restore, specify a new name, and then select the containing aggregate for the volume.
An existing volume	Select the Select Volume option. You must select a volume other than the source volume, or a read/write volume with some data in it and with a common Snapshot copy.
	Only those volumes with the same language attribute as the source volume are listed.

- Step 5. Select either the latest Snapshot copy or the specific Snapshot copy that you want to restore.
- Step 6. Select the confirmation check box to restore the volume from the Snapshot copy.
- Step 7. Optional: Select the **Enable Network Compression** check box to compress the data that is being transferred during the restore operation.
- Step 8. Click Restore.

How SnapMirror relationships work

You can create a data protection mirror relationship to a destination within a cluster to protect your data. For greater disaster protection, you can also create a mirror relationship to a destination in a different cluster in a different location.

A data protection mirror configuration consists of a source volume that can be replicated to one or more destination volumes. Each data protection mirror relationship is independent from the the other data protection mirror relationships.

Note: The destination volume must be running either the same ONTAP version as that of the source volume or a later version of ONTAP than that of the source volume.

Snapshot copies are used to update destination volumes. Snapshot copies are transferred from the source volume to the destination volume by using an automated schedule or manually; therefore, mirrors copies are updated asynchronously.

You can create data protection mirror relationships to destinations that are on the same aggregate as the source volume as well as to destinations that are on the same storage virtual machine (SVM) or on a different SVM. For greater protection, you can create the relationships to destinations on a different aggregate, which enables you to recover from any failure of the source volume's aggregate. However, these two configurations do not protect against a cluster failure.

To protect against a cluster failure, you can create a data protection mirror relationship in which the source volume is on one cluster and the destination volume is on a different cluster. If the cluster on which the source volume resides experiences a disaster, you can direct user clients to the destination volume on the cluster peer until the source volume is available again.

Vault relationships

You can use Storage Manager to create and manage vault relationships by using the vault policy.

Creating a vault relationship from a destination SVM

You can use Storage Manager to create a vault relationship from the destination storage virtual machine (SVM), and to assign a vault policy to create a backup vault. In the event of data loss or corruption on a system, backed-up data can be restored from the backup vault destination.

Before you begin

- The source cluster must be running ONTAP 8.2.2 or later.
- SnapVault license or SnapMirror license must be enabled on both the source cluster and the destination cluster.

Note: For some platforms, it is not mandatory for the source cluster to have the SnapVault license or the SnapMirror license enabled if the destination cluster has the SnapVault license or the SnapMirror license enabled.

- The source cluster and destination cluster must be in a healthy peer relationship.
- The destination SVM must have space available.
- The source aggregate and the destination aggregate must be 64-bit aggregates.
- A source volume of type read/write (rw) must exist.
- A vault (XDP) policy must exist.

If a vault policy does not exist, you must create a vault policy or accept the default vault policy (XDPDefault) that is automatically assigned.

- FlexVol volumes must be online and read/write.
- The SnapLock aggregate type must be the same.
- If you are connecting from a cluster running ONTAP 9.2 or earlier to a remote cluster on which SAML authentication is enabled, password-based authentication must be enabled on the remote cluster.

- Storage Manager does not support a cascade relationship. For example, a destination volume in a relationship cannot be the source volume in another relationship.
- You cannot create a vault relationship between a sync-source SVM and a sync-destination SVM in a MetroCluster configuration.
- You can create a vault relationship between sync-source SVMs in a MetroCluster configuration.
- You can create a vault relationship from a volume on a sync-source SVM to a volume on a data-serving SVM.

- You can create a vault relationship from a volume on a data-serving SVM to a data protection (DP) volume on a sync-source SVM.
- You can create a vault relationship only between a non-SnapLock (primary) volume and a Snaplock destination (secondary) volume.
- A maximum of 25 volumes can be protected in one selection.
- Step 1. Click **Protection** → **Relationships**.
- Step 2. In the Relationships window, click **Create**.
- Step 3. In the Browse SVM dialog box, select an SVM for the destination volume.
- Step 4. In the Create Protection Relationship dialog box, select **Vault** from the Relationship Type drop-down list.
- Step 5. Specify the cluster, the SVM, and the source volume.

 If the specified cluster is running a version of ONTAP software earlier than ONTAP 9.3, then only peered SVMs are listed. If the specified cluster is running ONTAP 9.3 or later, peered SVMs and permitted SVMs are listed.
- Step 6. Enter a volume name suffix.

 The volume name suffix is appended to the source volume names to generate the destination volume names.
- Step 7. If you are creating a SnapLock volume, specify the default retention period.

 The default retention period can be set to any value between 1 day through 70 years or Infinite.
- Step 8. Optional: Click **Browse**, and then change the vault policy.
- Step 9. Select a schedule for the relationship from the list of existing schedules.
- Step 10. Optional: Select Initialize Relationship to initialize the vault relationship.
- Step 11. Enable SnapLock aggregates, and then select a SnapLock Compliance aggregate or a SnapLock Enterprise aggregate.
- Step 12. Enable FabricPool-enabled aggregates, and then select an appropriate tiering policy.
- Step 13. Click Validate to verify whether the selected volumes have matching labels.
- Step 14. Click Create.

If you chose to create a destination volume, a volume of type dp is created with the following default settings:

- Autogrow is enabled.
- Deduplication is enabled or disabled according to the user preference or the source volume deduplication setting.
- Compression is disabled.
- The language attribute is set to match the language attribute of the source volume.

A vault relationship is created between the destination volume and the source volume. The base Snapshot copy is transferred to the destination volume if you have opted to initialize the relationship.

Deleting vault relationships

You can use Storage Manager to end a vault relationship between a source and destination volume, and release the Snapshot copies from the source.

Releasing the relationship permanently removes the base Snapshot copies used by the vault relationship on the source volume. To re-create the vault relationship, you must run the resynchronization operation from the source volume by using the command-line interface (CLI).

- Step 1. Click **Protection** → **Relationships**.
- Step 2. Select the volume for which you want to delete the vault relationship, and click **Delete**.
- Step 3. Select the confirmation check box, and then click **Delete**.

 You can also select the release base Snapshot copies check box to delete the base Snapshot copies used by the vault relationship on the source volume.

If the relationship is not released, then you must use the CLI to run the release operation on the source cluster to delete the base Snapshot copies that were created for the vault relationship from the source volume.

Editing vault relationships

You can use Storage Manager to edit a vault relationship either by selecting an existing policy or schedule in the cluster, or by creating a new policy or schedule. However, you cannot edit the parameters of an existing policy or schedule.

Before you begin

The source and destination clusters must be in a healthy peer relationship.

- Step 1. Click Protection → Relationships.
- Step 2. Select the vault relationship for which you want to modify the policy or schedule, and then click **Edit**.
- Step 3. In the Edit Relationship dialog box, select the appropriate action:

If you want to	Do the following
Select an existing policy	Click Browse , and then select an existing policy.
	You can select a policy that has the maximum number of matching labels with the Snapshot policy that is attached to the source volume.
Create a new policy	 Click Create Policy. Specify a name for the policy. Set the priority for scheduled transfers. Low indicates that the transfer has the least priority and is usually scheduled after normal priority transfers. By default, the priority is set to Normal. Select the Enable Network Compression check box to compress the data that is being transferred. Specify a SnapMirror label and destination retention count for the vault policy.
	You must ensure that a Snapshot copy with the same label is created on the source volume for the new SnapMirror label to be effective.
	6. Click Create .

Step 4. Specify a schedule for the relationship:

If	Do the following
You want to assign an existing schedule	Select an existing schedule from the list.
You want to create a new schedule	 Click Create Schedule. Specify a name for the schedule. Select one of the following options: Basic You can select this option to specify only the day of the week, time, and the transfer interval. Advanced You can select this option
	to specify a cron-style schedule. 4. Click Create .
You do not want to assign a schedule	Select None.

Step 5. Click OK.

Initializing a vault relationship

You can use Storage Manager to initialize a vault relationship if you have not already initialized it while creating the relationship. A baseline transfer of data is initiated from the source FlexVol volume to the destination FlexVol volume.

Before you begin

The source and destination clusters must be in a healthy peer relationship.

- Step 1. Click Protection → Relationships.
- Step 2. Select the relationship you want to initialize, and click **Operations** → **Initialize**.
- Step 3. In the Initialize window, click **Initialize**.

Result

A Snapshot copy is created and transferred to the destination.

This Snapshot copy is used as a baseline for subsequent incremental Snapshot copies.

Updating a vault relationship

You can use Storage Manager to manually initiate an unscheduled incremental update. You might require a manual update to prevent data loss due to an upcoming power outage, scheduled maintenance, or data migration.

Before you begin

The vault relationship must be initialized.

- Step 1. Click Protection → Relationships.
- Step 2. Select the relationship for which you want to update the data, and click **Operations → Update**.
- Step 3. Choose one of the following options:

Select **As Per Policy** to perform an incremental transfer from the recent common Snapshot copy between the source and destination volumes.

Select **Select Snapshot copy** and specify the Snapshot copy that you want to transfer.

- Step 4. Optional: Select **Limit transfer bandwidth to** to limit the network bandwidth that is used for transfers and specify the maximum transfer speed.
- Step 5. Click **Update**.
- Step 6. Verify the transfer status in the Details tab.

Quiescing a vault relationship

You can use Storage Manager to disable data transfers to the destination FlexVol volume by quiescing the vault relationship.

- Step 1. Click Protection → Relationships.
- Step 2. Select the relationship for which you want to stop the scheduled data transfers, and click **Operations** → **Quiesce** .
- Step 3. In the Quiesce window, click **Quiesce**.

If there is no transfer in progress, the transfer status is displayed as Quiesced. If a transfer is in progress, the transfer is not affected, and the transfer status is displayed as Quiescing until the transfer is complete.

Resuming a vault relationship

You can resume a quiesced vault relationship by using Storage Manager. When you resume the relationship, normal data transfer to the destination FlexVol volume is resumed and all vault activities are restarted.

- Step 1. Click **Protection** → **Relationships**.
- Step 2. Select the relationship for which you want to resume the data transfer, and click **Operations** → **Resume** .
- Step 3. In the Resume window, click **Resume**.

Result

Normal data transfers are resumed. If there is a scheduled transfer for the relationship, the transfer is started from the next schedule.

Aborting a Snapshot copy transfer

You can use Storage Manager to abort or stop a data transfer that is currently in progress.

- Step 1. Click **Protection** → **Relationships**.
- Step 2. Select the relationship for which you want to stop the data transfer, and click $\mathbf{Operations} \rightarrow \mathbf{Abort}$
- Step 3. Select the **Yes**, **I want to abort the transfer** check box to confirm the operation.
- Step 4. Optional: Select the **Keep any partially transferred data** check box to retain the data that is already transferred to the destination volume.
- Step 5. Click Abort.

Result

The transfer status is displayed as "Aborting" until the operation is complete and displayed as "Idle" after the operation is complete.

Restoring a volume in a vault relationship

You can use Storage Manager to restore Snapshot copies to a source volume or to other volumes if the source data is corrupted and is no longer usable. You can replace the original data with the Snapshot copies in the destination volume.

Before you begin

- The SnapMirror license must be enabled on both the source storage system and the destination storage system or on the nodes that contain the source volume and destination volume.
- The source cluster and destination cluster must be in a healthy peer relationship.
- The source aggregate or any other aggregate that you select for the restore operation must be a 64-bit aggregate.
- If you are connecting from a cluster running ONTAP 9.2 or earlier to a remote cluster on which SAML authentication is enabled, password-based authentication must also be enabled on the remote cluster.

About this task

- You cannot restore a volume that is in a vault relationship between a source storage virtual machine (SVM) and a destination SVM in a MetroCluster configuration.
- You can restore a vault relationship between sync-source SVMs in a MetroCluster configuration.
- You can restore a vault relationship from a volume on a sync-source SVM to a default SVM.
- You can restore a vault relationship from a volume on a default SVM to a DP volume on a sync-source SVM.
- Step 1. Click Protection → Relationships.
- Step 2. Select the vault relationship, and then click **Operations** → **Restore**.
- Step 3. In the Restore dialog box, restore the data to the source volume in the vault relationship or select any other volume:

If you want to restore the data to	Do this
The source volume	 Select Source volume . Go to Step 6.
Any other volume	Select Other volume , and then select the cluster and SVM from the list.

Step 4. Restore the data to a new volume or select any existing volume:

If you want to restore the data to	Do this
A new volume	If you want to change the default name, displayed in the format destination_SVM_name_destination_volume_name_ restore, specify a new name, and then select the containing aggregate for the volume.
An existing volume	Select the Select Volume option. You must select a volume other than the source volume, or a read/write volume with some data in it and with a common Snapshot copy. Only those volumes with the same language attribute as the source volume are listed.

- Step 5. Select either the latest Snapshot copy or the specific Snapshot copy that you want to restore.
- Step 6. Select the confirmation check box to restore the volume from the Snapshot copy.
- Step 7. Optional: Select the **Enable Network Compression** check box to compress the data that is being transferred during the restore operation.
- Step 8. Click Restore.

What a SnapVault backup is

A SnapVault backup is a collection of Snapshot copies on a FlexVol volume that you can restore data from if the primary data is not usable. Snapshot copies are created based on a Snapshot policy. The SnapVault backup backs up Snapshot copies based on its schedule and SnapVault policy rules.

A SnapVault backup is a disk-to-disk backup solution that you can also use to offload tape backups. In the event of data loss or corruption on a system, backed-up data can be restored from the SnapVault secondary volume with less downtime and uncertainty than is associated with conventional tape backup and restore operations.

The following terms are used to describe SnapVault backups:

baseline transfer An initial complete backup of a

primary storage volume to a corresponding volume on the

secondary system.

secondary volume A volume to which data is backed

up from a primary volume. Such a volume can be a secondary or tertiary (and onward) destination in a cascade or fanout backup configuration. The SnapVault secondary system maintains Snapshot copies for long-term storage and possible restore

operations.

incremental transfer A follow-up backup to the

secondary system that contains only the changes to the primary data since the last transfer action.

SnapMirror label An attribute that identifies

Snapshot copies for the purpose of selection and retention in SnapVault backups. Each SnapVault policy configures the rules for selecting Snapshot copies on the primary volume and transferring the Snapshot copies that match a given SnapMirror

label.

Snapshot copy The backup images on the source

volume that are created manually or automatically as scheduled by an assigned policy. Baseline Snapshot copies contain a copy of the entire source data being protected; subsequent Snapshot copies contain differential copies of the source data. Snapshot copies can be stored on the source volume or on a different destination volume in a different storage virtual machine (SVM) or

cluster.

Snapshot copies capture the state of volume data on each source system. For SnapVault and mirror relationships, this data is transferred to destination

volumes.

primary volume A volume that contains data that

is to be backed up. In cascade or fanout backup deployments, the primary volume is the volume that is backed up to a SnapVault backup, regardless of where in the chain the SnapVault source is. In a cascade chain configuration

in which A has a mirror relationship to B and B has a SnapVault relationship to C, B serves as the source for the SnapVault backup even though it is a secondary destination in the

chain.

SnapVault relationship A backup relationship, configured

as a SnapVault relationship, between a primary volume and a

secondary volume.

Mirror and vault relationships

You can use Storage Manager to create and manage mirror and vault relationships by using the mirror and vault policy.

Creating a mirror and vault relationship from a destination SVM

You can use Storage Manager to create a mirror and vault relationship from the destination storage virtual machine (SVM). Creating this relationship enables you to better protect your data by periodically transferring data from the source volume to the destination volume. It also enables you to retain data for long periods by creating backups of the source volume.

Before you begin

- The destination cluster must be running ONTAP 8.3.2 or later.
- SnapMirror license must be enabled on the source cluster and destination cluster.

Note: For some platforms, it is not mandatory for the source cluster to have the SnapMirror license enabled if the destination cluster has the SnapMirror license enabled.

- The source cluster and destination cluster must be in a healthy peer relationship.
- The destination SVM must have space available.
- The source aggregate and destination aggregate must be 64-bit aggregates.
- A source volume of type read/write (rw) must already exist.
- The SnapLock aggregate type must be the same.
- If you are connecting from a cluster running ONTAP 9.2 or earlier to a remote cluster on which SAML authentication is enabled, password-based authentication must be enabled on the remote cluster.

- Storage Manager does not support a cascade relationship. For example, a destination volume in a relationship cannot be the source volume in another relationship.
- You cannot create a mirror and vault relationship between a sync-source SVM and a sync-destination SVM in a MetroCluster configuration.

- You can create a mirror and vault relationship between sync-source SVMs in a MetroCluster configuration.
- You can create a mirror and vault relationship from a volume on a sync-source SVM to a volume of a data-serving SVM.
- You can create a mirror and vault relationship from a volume on a data-serving SVM to a DP volume on a sync-source SVM.
- A maximum of 25 volumes can be protected in one selection.
- Step 1. Click Protection → Relationships.
- Step 2. In the Relationships window, click Create.
- Step 3. In the Browse SVM dialog box, select an SVM for the destination volume.
- Step 4. In the Create Protection Relationship dialog box, select **Mirror and Vault** from the Relationship Type drop-down list.
- Step 5. Specify the cluster, the SVM, and the source volume.

 If the specified cluster is running a version of ONTAP software earlier than ONTAP 9.3, then only peered SVMs are listed. If the specified cluster is running ONTAP 9.3 or later, peered SVMs and permitted SVMs are listed.
- Step 6. Enter a volume name suffix.

 The volume name suffix is appended to the source volume names to generate the destination volume names.
- Step 7. Optional: Click **Browse**, and then change the mirror and vault policy.

 You can select the policy that has the maximum number of matching labels with the Snapshot policy that is attached to the source volume.
- Step 8. Select a schedule for the relationship from the list of existing schedules.
- Step 9. Optional: Select **Initialize Relationship** to initialize the relationship.
- Step 10. Enable FabricPool-enabled aggregates, and then select an appropriate tiering policy.
- Step 11. Click Validate to verify whether the selected volumes have matching labels.
- Step 12. Click Create.

Deleting mirror and vault relationships

You can use Storage Manager to end a mirror and vault relationship between a source and destination volume, and release the Snapshot copies from the source volume.

About this task

- It is a best practice to break the mirror and vault relationship before deleting the relationship.
- To re-create the relationship, you must run the resynchronization operation from the source volume by using the command-line interface (CLI).
- Step 1. Click **Protection** → **Relationships**.
- Step 2. Select the mirror and vault relationship that you want to delete and click **Delete**.
- Step 3. Select the confirmation check box, and then click **Delete** .

 You can also select the release base Snapshot copies check box to delete the base Snapshot copies used by the mirror and vault relationship on the source volume.

If the relationship is not released, then you must use the CLI to run the release operation on the source cluster to delete the base Snapshot copies that were created for the mirror and vault relationship from the source volume.

The relationship is deleted and the base Snapshot copies on the source volume are permanently deleted.

Editing mirror and vault relationships

You can use Storage Manager to edit a mirror and vault relationship by modifying the selected policy or schedule. However, you cannot edit the parameters of an existing policy or schedule.

Before you begin

The source and destination clusters must be in a healthy peer relationship.

About this task

You can modify the relationship type of a version-flexible mirror relationship, vault relationship, or mirror and vault relationship by modifying the policy type.

- Step 1. Click Protection → Relationships.
- Step 2. Select the mirror and vault relationship that you want to modify, and then click Edit .
- Step 3. In the Edit Relationship dialog box, select the appropriate action:

If you want to	Do the following
Select an existing policy	Click Browse , and then select an existing policy.
	You can select a policy that has the maximum number of matching labels with the Snapshot policy that is attached to the source volume.
Create a new policy	 Click Create Policy . Specify a name for the policy. Set the priority for scheduled transfers. Low indicates that the transfer has the least priority and is usually scheduled after normal priority transfers. By default, the priority is set to Normal. Select the Enable Network Compression check box to compress the data that is being transferred. Specify a SnapMirror label and
	destination retention count for the vault policy. You must ensure that a Snapshot copy with the same label is created on the source volume for the new SnapMirror label to be effective. 6. Click Create.

Step 4. Specify a schedule for the relationship:

If	Do the following
You want to assign an existing schedule	Click Browse , and then select an existing schedule.
You want to create a new schedule	 Click Create Schedule . Specify a name for the schedule. Select one of the following options: Basic You can select this option to specify only the day of the week, time, and the transfer interval. Advanced You can select this option to specify a cron style schedule. Click Create .
You do not want to assign a schedule	Select None.

Step 5. Click OK.

Initializing mirror and vault relationships

You can use Storage Manager to initialize a mirror and vault relationship if you have not already initialized the relationship while creating it. When you initialize a relationship, a complete baseline transfer of data is performed from the source volume to the destination.

Before you begin

The source and destination clusters must be in a healthy peer relationship.

- Step 1. Click Protection → Relationships.
- Step 2. Select the mirror and vault relationship that you want to initialize, and then click **Operations** → **Initialize**.
- Step 3. Select the confirmation check box, and then click **Initialize**.
- Step 4. Verify the status of the relationship in the Protection window.

Result

A Snapshot copy is created and transferred to the destination.

This Snapshot copy is used as a baseline for subsequent incremental Snapshot copies.

Updating mirror and vault relationships

You can use Storage Manager to manually initiate an unscheduled incremental update. You might require a manual update to prevent data loss due to an upcoming power outage, scheduled maintenance, or data migration.

Before you begin

The mirror and vault relationship must be initialized and in a Snapmirrored state.

Step 1. Click Protection → Relationships.

- Step 2. Select the mirror relationship for which you want to update the data, and then click **Operations** → **Update** .
- Step 3. Choose one of the following options:

Select **As Per Policy** to perform an incremental transfer from the recent common Snapshot copy between the source and destination volumes.

Select Select Snapshot copy and specify the Snapshot copy that you want to transfer.

- Step 4. Optional: Select **Limit transfer bandwidth to** to limit the network bandwidth that is used for transfers, and then specify the maximum transfer speed.
- Step 5. Click Update.
- Step 6. Verify the transfer status in the Details tab.

Quiescing mirror and vault relationships

You can use Storage Manager to quiesce a destination volume to stabilize the destination before creating a Snapshot copy. The quiesce operation enables active data transfers to finish and disables future transfers for the mirror and vault relationship.

Before you begin

The mirror and vault relationship must be in a Snapmirrored state.

- Step 1. Click Protection → Relationships.
- Step 2. Select the mirror and vault relationship that you want to quiesce, and then click **Operations** → **Quiesce**.
- Step 3. Select the confirmation check box, and then click Quiesce.

Result

If there is no transfer in progress, the transfer status is displayed as Quiesced. If a transfer is in progress, the transfer is not affected, and the transfer status is displayed as Quiescing until the transfer is complete.

Resuming mirror and vault relationships

If you have a quiesced mirror and vault relationship, you can resume the relationship by using Storage Manager . When you resume the relationship, normal data transfer to the destination volume is resumed and all the protection activities are restarted.

About this task

If you have quiesced a broken mirror and vault relationship from the command-line interface (CLI), you cannot resume the relationship from Storage Manager. You must use the CLI to resume the relationship.

- Step 1. Click Protection → Relationships.
- Step 2. Select the mirror and vault relationship that you want to resume, and then click **Operations** → **Resume** .
- Step 3. Select the confirmation check box, and then click **Resume**.

Result

Normal data transfers are resumed. If there is a scheduled transfer for the relationship, the transfer is started from the next schedule.

Breaking mirror and vault relationships

You can use Storage Manager to break a mirror and vault relationship if a source volume becomes unavailable and you want client applications to access the data from the destination volume. You can use the destination volume to serve data while you repair or replace the source volume, update the source volume, and reestablish the original configuration of the systems.

Before you begin

- The mirror and vault relationship must be in the quiesced state or idle state.
- The destination volume must be mounted on the destination storage virtual machine (SVM) namespace.

About this task

You can break mirror relationships between ONTAP systems and SolidFire storage systems.

- Step 1. Click Protection → Relationships.
- Step 2. Select the mirror and vault relationship that you want to break, and then click **Operations** → **Break**
- Step 3. Select the confirmation check box, and then click Break.

Result

The mirror and vault relationship is broken. The destination volume type changes from data protection (DP) read-only to read/write. The system stores the base Snapshot copy for the mirror and vault relationship for later use.

Resynchronizing mirror and vault relationships

You can use Storage Manager to reestablish a mirror and vault relationship that was broken earlier. You can perform a resynchronization operation to recover from a disaster that disabled the source volume. For Infinite Volumes, the resynchronization operation recovers the volume and its constituents.

Before you begin

The source and destination clusters and the source and destination storage virtual machines (SVMs) must be in peer relationships.

About this task

 When you perform a resynchronization operation, the contents on the destination volume are overwritten by the contents on the source.

Attention: The resynchronization operation can cause loss of newer data written to the destination volume after the base Snapshot copy was created.

- If the Last Transfer Error field in the Protection window recommends a resynchronization operation, you must first break the relationship and then perform the resynchronization operation.
- Step 1. Click **Protection** → **Relationships**.
- Step 2. Select the mirror and vault relationship that you want to resynchronize, and then click **Operations** → **Resync**.
- Step 3. Select the confirmation check box, and then click **Resync**.

Reverse resynchronizing mirror and vault relationships

You can use Storage Manager to reestablish a mirror and vault relationship that was previously broken. In a reverse resynchronization operation, the functions of the source and destination volumes are reversed. You can use the destination volume to serve data while you repair or replace the source, update the source, and reestablish the original configuration of the systems.

Before you begin

The source volume must be online.

About this task

 When you perform reverse resynchronization, the contents on the source volume are overwritten by the contents on the destination volume.

Attention: The reverse resynchronization operation can cause data loss on the source volume.

- When you perform reverse resynchronization, the policy of the relationship is set to MirrorAndVault and the schedule is set to None.
- Step 1. Click **Protection** → **Relationships**.
- Step 2. Select the mirror and vault relationship that you want to reverse, and then click **Operations** → **Reverse Resync**.
- Step 3. Select the confirmation check box, and then click Reverse Resync.

Aborting mirror and vault relationships

You can abort a volume replication operation if you want to stop the data transfer. You can abort a scheduled update, a manual update, or an initial data transfer.

- Step 1. Click **Protection** → **Relationships**.
- Step 2. Select the mirror and vault relationship for which you want to stop the data transfer, and then click **Operations** → **Abort** .
- Step 3. Select the Yes, I want to abort the transfer check box to confirm the operation.
- Step 4. Optional: Select the **Keep any partially transferred data** check box to retain the data that is already transferred to the destination volume.
- Step 5. Click Abort.

Result

The transfer status is displayed as "Aborting" until the operation is complete and displayed as "Idle" after the operation is complete.

Restoring a volume in a mirror and vault relationship

You can use Storage Manager to restore Snapshot copies to a source volume or to other volumes if the source data is corrupted and is no longer usable. You can replace the original data with the Snapshot copies in the destination volume.

Before you begin

- The SnapMirror license and SnapVault license must be enabled on both the source cluster and the
 destination cluster or on the nodes that contain the source volume and destination volume.
- The source cluster and destination cluster must be in a healthy peer relationship.

- The source aggregate or any other aggregate that you select for the restore operation must be a 64-bit aggregate.
- If you are connecting from a cluster running ONTAP 9.2 or earlier to a remote cluster on which SAML authentication is enabled, password-based authentication must also be enabled on the remote cluster.

About this task

- You cannot restore a volume that is in a mirror and vault relationship between a source storage virtual machine (SVM) and a destination SVM in a MetroCluster configuration.
- You can restore a mirror and vault relationship for the following configurations:
 - Between sync-source SVMs in a MetroCluster configuration
 - From a volume on a sync-source SVM to a default SVM
 - From a volume on a default SVM to a DP volume on a sync-source SVM
- Step 1. Click **Protection** → **Relationships**.
- Step 2. Select the mirror and vault relationship that you want to restore, and then click **Operations** → **Restore** .
- Step 3. In the Restore dialog box, restore the data to the source volume in the relationship or select any other volume:

If you want to restore the data to	Do this
The source volume	 Select Source volume . Go to Step 6 on page 317 .
Any other volume	Select Other volume , and then select the cluster and the SVM.

Step 4. Restore the data to a new volume or to an existing volume:

If you want to restore the data to	Do this	
A new volume	If you want to change the default name, displayed in the format "destination_SVM_name_destination_volume_name_restore", specify a new name, and then select the containing aggregate for the volume.	
An existing volume	Select the Select Volume option. You must select a volume other than the source volume, or a read/write volume with some data in it and with a common Snapshot copy. Only those volumes with the same language attribute as the source volume are listed.	

- Step 5. Select either the latest Snapshot copy or the specific Snapshot copy that you want to restore.
- Step 6. Select the confirmation check box to restore the volume from the Snapshot copy.
- Step 7. Optional: Select the **Enable Network Compression** check box to compress the data that is being transferred during the restore operation.
- Step 8. Click Restore.

What lag time is

Lag time is the amount of time by which the destination system lags behind the source system.

The lag time is the difference between the current time and the timestamp of the Snapshot copy that was last successfully transferred to the destination system. The lag time will always be at least as much as the duration of the last successful transfer, unless the clocks on the source and destination systems are not synchronized. The time zone difference is automatically calculated into the lag time.

Types of data protection relationships

Depending on your data protection and backup requirements, ThinkSystem Storage Manager for DM Series provides different types of protection relationships that enable you to protect data against accidental, malicious, or disaster-induced loss of data.

Mirror relationship (SnapMirror license required)

A mirror relationship provides asynchronous disaster recovery. Data protection mirror relationships enable you to periodically create Snapshot copies of the data on one volume, to copy those Snapshot copies to a partner volume (the destination volume), which is usually on another cluster, and then to retain those Snapshot copies. If the data on the source volume is corrupted or lost, the mirror copy on the destination volume ensures quick availability and restoration of data from the time of the latest Snapshot copy.

For mirror relationships, the version of ONTAP that is running on the destination cluster must be the same version as or a later version than the ONTAP version running on the source cluster. However, version-flexible mirror relationships are not dependent on the ONTAP version. Therefore, you can create a version-flexible mirror relationship with a destination cluster that is running either a later ONTAP version or an earlier ONTAP version than the ONTAP version of the source cluster or an earlier version of ONTAP than the ONTAP version of the source cluster.

Note: The version-flexible mirror relationship feature is available only from ONTAP 8.3 onward. You cannot have a version-flexible mirror relationship with a volume in Data ONTAP 8.3 or earlier.

Mirror relationships are valid for FlexVol volumes and Infinite Volumes.

Vault relationship (SnapMirror or SnapVault license required)

A vault relationship provides storage-efficient and long-term retention of backups. Vault relationships enable you to back up selected Snapshot copies of volumes to a destination volume and to retain the backups.

Vault relationships are valid only for FlexVol volumes.

Mirror and vault relationship (SnapMirror licenses required)

A mirror and vault relationship provides data protection by periodically transferring data from the source volume to the destination volume and also facilitates long-term retention of data by creating backups of the source volume.

Note: The mirror and vault relationship feature is available only from ONTAP 8.3.2 onward. You cannot have a mirror and vault relationship with a volume in Data ONTAP 8.3.2 or earlier.

A mirror and vault relationship is valid for FlexVol volumes and FlexGroup volumes.

SnapMirror licensing

A SnapMirror license is required on both the source and destination clusters. A SnapVault license is not required if a SnapMirror license is already installed.

Protection window

You can use the Protection window to create and manage mirror relationships, vault relationships, and mirror vault relationships and to display details about these relationships. The Protection window does not display load-sharing (LS) relationships and transition (TDP) relationships.

Namespace mirrors and constituents are not displayed for mirror relationships on Infinite Volumes.

- "Command buttons" on page 319
- "Protection relationships list" on page 319
- " Details area " on page 320

Command buttons

Command buttons	
Create	Opens the Create Protection Relationship dialog box, which you can use to create a mirror relationship, vault relationship, or mirror and vault relationship from a destination volume.
	Storage Manager does not display any storage virtual machine (SVM) configured for disaster recovery (DR) in the Create Protection Relationship dialog box.
Edit	Opens the Edit Protection Relationship dialog box, which you can use to edit the schedule and policy of a relationship.
	For a vault relationship, mirror and vault relationship, or version-flexible mirror relationship, you can modify the relationship type by modifying the policy type.
Delete	Opens the Delete Protection Relationship dialog box, which you can use to delete a relationship.
Operations	Displays the operations that can be performed on a protection relationship.
Refresh	Updates the information in the window.

Protection relationships list

Source Storage Virtual Machine
Displays the SVM that contains the volume from which data is mirrored or vaulted in a relationship.

Source Volume
Displays the volume from which data is mirrored or

vaulted in a relationship.

Destination Volume

Displays the volume to which data is mirrored or vaulted in a relationship.

Is Healthy Displays whether the relationship is healthy or not.

Relationship State Displays the state of the relationship, such as

Snapmirrored, Uninitialized, or Broken Off.

Transfer Status Displays the relationship status, such as Idle,

Transferring, or Aborting.

Relationship Type Displays the type of relationship, such as Mirror,

Vault, or Mirror and Vault.

Lag Time Displays the difference between the current time

and the timestamp of the Snapshot copy that was last transferred successfully to the destination storage system. It indicates the time difference between the data that is currently on the source system and the latest data that is stored on the destination system. The value that is displayed can be positive or negative. The value is negative if the time zone of the destination system is behind the

time zone of the source storage system.

Policy Name Displays the name of the policy that is assigned to

the relationship.

Policy Type Displays the type of policy that is assigned to the

relationship. The policy type can be Vault, Mirror

Vault, or Asynchronous Mirror.

Details area

Details tab Displays general information about the selected

relationship, such as the source cluster and destination cluster, data transfer rate, state of the relationship, details about the network compression ratio, data transfer status, type of current data transfer, type of last data transfer, latest Snapshot copy, and timestamp of the latest Snapshot copy.

Policy Details tab Displays details about the policy that is assigned to

the selected protection relationship. This tab also displays the SnapMirror label and the Snapshot copy schedules in the source volume that match the

specified label.

Snapshot Copies tab Displays the count of Snapshot copies with the

SnapMirror label attribute for the selected protection relationship and the timestamp of the

latest Snapshot copy.

Protection policies

You can use Storage Manager to create, edit, and delete protection policies.

Creating protection policies

You can use Storage Manager to create cluster-level asynchronous mirror policies, vault policies, or mirror and vault policies, and to apply these policies to a cluster-level data protection relationship.

- Step 1. Click Protection → Protection Policies .
- Step 2. Click Create.
- Step 3. In the Create Policy dialog box, select the type of policy that you want to create.
- Step 4. Specify the policy name and transfer priority.

 Low indicates that the transfer has the lowest priority. Low priority transfers are usually scheduled after normal priority transfers. By default, the transfer priority is set to Normal.
- Step 5. Optional: For an asynchronous mirror policy, select the **Transfer All Source Snapshot Copies** check box to include the "all_source_snapshots" rule to the mirror policy, which backs up all of the Snapshot copies from the source volume.
- Step 6. Optional: Select the **Enable Network Compression** check box to compress the data that is being transferred during a data transfer.
- Step 7. Optional: Click **Add Comments** to add additional comments for the policy.
- Step 8. For a vault policy or mirror vault policy, specify a SnapMirror label and a destination retention count.
- Step 9. Click Create.

Protection Policies window

You can use the Protection Policies window to create, manage, and display information about mirror, vault, and mirror vault policies.

- "Command buttons" on page 321
- "Protection policies list" on page 321
- " Details area " on page 322

Command buttons

Create Opens the Create Policy dialog box, which enables

you to create a mirror, vault, or mirror vault policy.

Edit Opens the Edit Policy dialog box, which enables

you to edit a policy.

Delete Opens the Delete Policy dialog box, which enables

you to delete a policy.

Refresh Updates the information in the window.

Protection policies list

Name Displays the name of the protection policy.

Type Displays the policy type, which can be Vault, Mirror

Vault, or Asynchronous Mirror.

Comment Displays the description specified for the policy.

Transfer Priority Displays the data transfer priority, such as Normal

or Low.

Details area

Policy Details tab Displays details of the protection policy, such as the

user who created the policy, number of rules,

retention count, and status of network

compression.

Policy Rules tab Displays details of the rules that are applied to the

policy. The Policy Rules tab is displayed only if the

selected policy contains rules.

Snapshot policies

You can use Storage Manager to create and manage Snapshot policies in your storage system.

Creating Snapshot policies

You can create a Snapshot policy in Storage Manager to specify the maximum number of Snapshot copies that can be automatically created and the frequency of creating them.

- Step 1. Click Protection → Snapshot Policies.
- Step 2. Click Create.
- Step 3. In the Create Snapshot Policy dialog box, specify the policy name.
- Step 4. Click **Add**, and then specify the schedule name, the maximum number of Snapshot copies that you want to retain, and the SnapMirror label name.
 - The maximum number of Snapshot copies that can be retained by the specified schedules must not exceed 254.
- Step 5. Click OK, and then click Create.

Editing Snapshot policies

You can modify the details of an existing Snapshot policy, such as the schedule name, SnapMirror label, or the maximum number of Snapshot copies that are created by using the Edit Snapshot Policy dialog box in Storage Manager.

About this task

For an Infinite Volume, scheduled Snapshot copies cannot occur more often than at an hourly rate.

- Step 1. Click Protection → Snapshot Policies.
- Step 2. In the Snapshot Policies window, select the Snapshot policy that you want to modify and click Edit.
- Step 3. In the Edit Snapshot Policy dialog box, select the schedule that you want to modify and click Edit.
- Step 4. Click OK.
- Step 5. Verify the changes you made to the selected Snapshot policy in the Edit Snapshot Policy dialog box and click **Save**.

Deleting Snapshot policies

You can use Storage Manager to delete Snapshot policies. If you delete a Snapshot policy that is being used by one or more volumes, Snapshot copies of the volume or volumes are no longer created according to the deleted policy.

Before you begin

You must have dissociated the Snapshot policy from each volume that uses it.

Step 1. Click Protection → Snapshot Policies .

Step 2. Select the Snapshot policy and click **Delete**.

Step 3. Select the confirmation check box, and then click **Delete**.

About Snapshot policies

When applied to a volume, a Snapshot policy specifies a schedule or schedules according to which Snapshot copies are created and specifies the maximum number of Snapshot copies that each schedule can create. A Snapshot policy can include up to five schedules.

For vault relationships, the SnapMirror Label attribute is used to select Snapshot copies on the source volumes. Only Snapshot copies with the labels configured in the vault policy rules are replicated in backup vault operations. The Snapshot policy assigned to the source volume must include the SnapMirror Label attribute.

Snapshot Policies window

You can use the Snapshot Policies window to manage Snapshot policy tasks, such as adding, editing, and deleting Snapshot policies.

Command buttons

which enables you to add backup schedules and specify the maximum number of Snapshot copies to

be retained in a policy.

Edit Opens the Edit Snapshot Policy dialog box, which

enables you to modify the frequency at which Snapshot copies should be created and the maximum number of Snapshot copies to be

retained.

Delete Opens the Delete dialog box, which enables you to

delete the selected Snapshot policy.

View as Enables you to view the Snapshot policies either as

a list or as a tree.

Status Opens the menu, which you can use to either

enable or disable the selected Snapshot policy.

Refresh Updates the information in the window.

Snapshot policy list

Policy/Schedule Name Specifies the name of the Snapshot policy and the

schedules in the policy.

Storage Virtual Machine Specifies the name of the storage virtual machine

(SVM) to which the Snapshot copies belong.

Status Specifies the status of the Snapshot policy, which

can be Enabled or Disabled.

Maximum Snapshots to be retained Specifies the maximum number of Snapshot copies to be retained.

SnapMirror Label Specifies the name of the SnapMirror label attribute of the Snapshot copy generated by the backup schedule.

Schedules

You can use Storage Manager to create and manage schedules in your storage system.

Creating schedules

You can create schedules to run a job at a specific time or at regular periods by using Storage Manager.

About this task

When you create a schedule in a MetroCluster configuration, it is a best practice to create an equivalent schedule on the cluster in the surviving site as well.

- Step 1. Click Protection → Schedules .
- Step 2. Click Create.
- Step 3. In the Create Schedule dialog box, specify the schedule name.
- Step 4. Create a schedule based on your requirements:

If you want to create	Do this	
A daily or a specific schedule on certain days	Select Basic , and specify the schedule and recurrence details (in hours and minutes).	
A schedule that runs at a specific interval	Select Interval , and specify the schedule and recurrence details (in days, hours, and minutes).	
A schedule that runs at a specific period	Select Advanced , and specify the schedule and recurrence details (in months, days, weekdays, hours, and minutes).	

Step 5. Click Create.

Editing schedules

You can make changes to a previously created cron schedule or an interval schedule if it does not meet your requirements by using Storage Manager. You can modify schedule details such as recurring days and hours, interval options, and advanced cron options.

About this task

When you edit a schedule in a MetroCluster configuration, it is a best practice to edit the equivalent schedule on the surviving site cluster as well.

- Step 1. Click Protection → Schedules.
- Step 2. Select the schedule that you want to modify and click Edit .
- Step 3. In the Edit Schedule dialog box, modify the schedule by performing the appropriate action:

If you select the schedule option as	Do this
Basic	Specify the recurring days and recurring schedule details.
Interval	Specify the interval options in days, hours, and minutes.
Advanced	Specify the advanced cron options in months, days, week days (if applicable), hours, and minutes.

Step 4. Click OK.

Deleting schedules

You can use Storage Manager to delete the schedules that run specific storage management tasks.

- Step 1. Click Protection → Schedules.
- Step 2. Select the schedule that you want to delete and click **Delete**.
- Step 3. Select the confirmation check box, and then click **Delete**.

Schedules

You can configure many tasks (for instance, volume Snapshot copies and mirror replications) to run on specified schedules. Schedules that are run at specified schedules are known as *cron* schedules because of their similarity to UNIX cron schedules. Schedules that are run at intervals are known as *interval* schedules.

You can manage schedules in the following ways:

- Creating a cron schedule or an interval schedule
- Displaying information about all the schedules
- Modifying a cron schedule or an interval schedule
- Deleting a cron schedule or an interval schedule

You cannot delete a schedule that is currently in use by a running job.

The cluster administrator can perform all the schedule management tasks.

Schedules window

You can use the Schedules window to manage scheduled tasks, such as creating, displaying information about, modifying, and deleting schedules.

Command buttons

Create	Opens the Create Schedule dialog box, which enables you to create time-based and interval schedules.
Edit	Opens the Edit Schedule dialog box, which enables you to edit the selected schedules.
Delete	Opens the Delete Schedule dialog box, which enables you to delete the selected schedules.
Refresh	Updates the information in the window.

Schedules list

Name Specifies the name of the schedule.

Type Specifies the type of the schedule—time-based or

interval-based.

Details area

The details area displays information about when a selected schedule is run.

Appendix A. Contacting Support

You can contact Support to obtain help for your issue.

You can receive hardware service through a Lenovo Authorized Service Provider. To locate a service provider authorized by Lenovo to provide warranty service, go to https://datacentersupport.lenovo.com/serviceprovider and use filter searching for different countries. For Lenovo support telephone numbers, see https://datacentersupport.lenovo.com/supportphonelist for your region support details.

© Copyright Lenovo 2018, 2023 327

Appendix B. Notices

Lenovo may not offer the products, services, or features discussed in this document in all countries. Consult your local Lenovo representative for information on the products and services currently available in your area.

Any reference to a Lenovo product, program, or service is not intended to state or imply that only that Lenovo product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any Lenovo intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any other product, program, or service.

Lenovo may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document is not an offer and does not provide a license under any patents or patent applications. You can send inquiries in writing to the following:

Lenovo (United States), Inc. 1009 Think Place Morrisville, NC 27560 U.S.A.

Attention: Lenovo VP of Intellectual Property

LENOVO PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. Lenovo may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

The products described in this document are not intended for use in implantation or other life support applications where malfunction may result in injury or death to persons. The information contained in this document does not affect or change Lenovo product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of Lenovo or third parties. All information contained in this document was obtained in specific environments and is presented as an illustration. The result obtained in other operating environments may vary.

Lenovo may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Any references in this publication to non-Lenovo Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this Lenovo product, and use of those Web sites is at your own risk.

Any performance data contained herein was determined in a controlled environment. Therefore, the result obtained in other operating environments may vary significantly. Some measurements may have been made on development-level systems and there is no guarantee that these measurements will be the same on generally available systems. Furthermore, some measurements may have been estimated through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment.

© Copyright Lenovo 2018, 2023 329

Trademarks

LENOVO, LENOVO logo, and THINKSYSTEM are trademarks of Lenovo. All other trademarks are the property of their respective owners. © 2023 Lenovo.

Lenovo